-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcvimodel_pretrained.py
executable file
·506 lines (418 loc) · 15.9 KB
/
cvimodel_pretrained.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
"""
This script loads ONNX models exported by ./export-onnx.py
and uses them to decode waves.
We use the pre-trained model from
https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
as an example to show how to use this file.
1. Download the pre-trained model
cd egs/librispeech/ASR
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "exp/pretrained.pt"
cd exp
ln -s pretrained.pt epoch-99.pt
popd
2. Export the model to ONNX
./pruned_transducer_stateless7_streaming/export-onnx.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
--decode-chunk-len 32 \
--exp-dir $repo/exp/
It will generate the following 3 files in $repo/exp
- encoder-epoch-99-avg-1.onnx
- decoder-epoch-99-avg-1.onnx
- joiner-epoch-99-avg-1.onnx
3. Run this file with the exported ONNX models
./pruned_transducer_stateless7_streaming/onnx_pretrained.py \
--encoder-model-filename $repo/exp/encoder-epoch-99-avg-1.onnx \
--decoder-model-filename $repo/exp/decoder-epoch-99-avg-1.onnx \
--joiner-model-filename $repo/exp/joiner-epoch-99-avg-1.onnx \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav
Note: Even though this script only supports decoding a single file,
the exported ONNX models do support batch processing.
"""
try:
from tpu_mlir.python import *
except ImportError:
pass
from tools.model_runner import mlir_inference, model_inference
from utils.preprocess import supported_customization_format
import argparse
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
import torchaudio
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--encoder-model-filename",
type=str,
required=True,
help="Path to the encoder onnx model. ",
)
parser.add_argument(
"--decoder-model-filename",
type=str,
required=True,
help="Path to the decoder onnx model. ",
)
parser.add_argument(
"--joiner-model-filename",
type=str,
required=True,
help="Path to the joiner onnx model. ",
)
parser.add_argument(
"--tokens",
type=str,
help="""Path to tokens.txt.""",
)
parser.add_argument(
"sound_file",
type=str,
help="The input sound file to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
return parser
class CviModel:
def __init__(
self,
encoder_model_filename: str,
decoder_model_filename: str,
joiner_model_filename: str,
):
self.init_encoder(encoder_model_filename)
self.init_decoder(decoder_model_filename)
self.init_joiner(joiner_model_filename)
def init_encoder(self, encoder_model_filename: str):
self.encoder = encoder_model_filename
self.init_encoder_states()
def init_encoder_states(self, batch_size: int = 1):
encoder_meta = {'cnn_module_kernels': '31,31,31,31,31', 'attention_dims': '192,192,192,192,192', 'encoder_dims': '384,384,384,384,384', 'left_context_len': '64,32,16,8,32', 'num_encoder_layers': '2,4,3,2,4', 'T': '39', 'decode_chunk_len': '32', 'version': '1', 'model_author': 'k2-fsa', 'model_type': 'zipformer'}
model_type = encoder_meta["model_type"]
assert model_type == "zipformer", model_type
decode_chunk_len = int(encoder_meta["decode_chunk_len"])
T = int(encoder_meta["T"])
num_encoder_layers = encoder_meta["num_encoder_layers"]
encoder_dims = encoder_meta["encoder_dims"]
attention_dims = encoder_meta["attention_dims"]
cnn_module_kernels = encoder_meta["cnn_module_kernels"]
left_context_len = encoder_meta["left_context_len"]
def to_int_list(s):
return list(map(int, s.split(",")))
num_encoder_layers = to_int_list(num_encoder_layers)
encoder_dims = to_int_list(encoder_dims)
attention_dims = to_int_list(attention_dims)
cnn_module_kernels = to_int_list(cnn_module_kernels)
left_context_len = to_int_list(left_context_len)
print(f"decode_chunk_len: {decode_chunk_len}")
print(f"T: {T}")
print(f"num_encoder_layers: {num_encoder_layers}")
print(f"encoder_dims: {encoder_dims}")
print(f"attention_dims: {attention_dims}")
print(f"cnn_module_kernels: {cnn_module_kernels}")
print(f"left_context_len: {left_context_len}")
num_encoders = len(num_encoder_layers)
cached_len = []
cached_avg = []
cached_key = []
cached_val = []
cached_val2 = []
cached_conv1 = []
cached_conv2 = []
N = batch_size
for i in range(num_encoders):
cached_len.append(torch.zeros(num_encoder_layers[i], N, dtype=torch.int64))
cached_avg.append(torch.zeros(num_encoder_layers[i], N, encoder_dims[i]))
cached_key.append(
torch.zeros(
num_encoder_layers[i], left_context_len[i], N, attention_dims[i]
)
)
cached_val.append(
torch.zeros(
num_encoder_layers[i],
left_context_len[i],
N,
attention_dims[i] // 2,
)
)
cached_val2.append(
torch.zeros(
num_encoder_layers[i],
left_context_len[i],
N,
attention_dims[i] // 2,
)
)
cached_conv1.append(
torch.zeros(
num_encoder_layers[i], N, encoder_dims[i], cnn_module_kernels[i] - 1
)
)
cached_conv2.append(
torch.zeros(
num_encoder_layers[i], N, encoder_dims[i], cnn_module_kernels[i] - 1
)
)
self.cached_len = cached_len
self.cached_avg = cached_avg
self.cached_key = cached_key
self.cached_val = cached_val
self.cached_val2 = cached_val2
self.cached_conv1 = cached_conv1
self.cached_conv2 = cached_conv2
self.num_encoders = num_encoders
self.segment = T
self.offset = decode_chunk_len
def init_decoder(self, decoder_model_filename: str):
self.decoder = decoder_model_filename
decoder_meta = {'vocab_size': '6254', 'context_size': '2'}
self.context_size = int(decoder_meta["context_size"])
self.vocab_size = int(decoder_meta["vocab_size"])
print(f"context_size: {self.context_size}")
print(f"vocab_size: {self.vocab_size}")
def init_joiner(self, joiner_model_filename: str):
self.joiner = joiner_model_filename
joiner_meta = {'joiner_dim': '512'}
self.joiner_dim = int(joiner_meta["joiner_dim"])
print(f"joiner_dim: {self.joiner_dim}")
def _build_encoder_input_output(
self,
x: torch.Tensor,
) -> Tuple[Dict[str, np.ndarray], List[str]]:
encoder_input = {"x": x.numpy()}
encoder_output = ["encoder_out_Add_f32"]
def build_states_input(states: List[torch.Tensor], name: str):
for i, s in enumerate(states):
if isinstance(s, torch.Tensor):
encoder_input[f"{name}_{i}"] = s.numpy()
else:
encoder_input[f"{name}_{i}"] = s
encoder_output.append(f"new_{name}_{i}_Concat_f32")
build_states_input(self.cached_len, "cached_len")
build_states_input(self.cached_avg, "cached_avg")
build_states_input(self.cached_key, "cached_key")
build_states_input(self.cached_val, "cached_val")
build_states_input(self.cached_val2, "cached_val2")
build_states_input(self.cached_conv1, "cached_conv1")
build_states_input(self.cached_conv2, "cached_conv2")
return encoder_input, encoder_output
def _update_states(self, states: List[np.ndarray]):
num_encoders = self.num_encoders
self.cached_len = states[num_encoders * 0 : num_encoders * 1]
self.cached_avg = states[num_encoders * 1 : num_encoders * 2]
self.cached_key = states[num_encoders * 2 : num_encoders * 3]
self.cached_val = states[num_encoders * 3 : num_encoders * 4]
self.cached_val2 = states[num_encoders * 4 : num_encoders * 5]
self.cached_conv1 = states[num_encoders * 5 : num_encoders * 6]
self.cached_conv2 = states[num_encoders * 6 : num_encoders * 7]
def run_encoder(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x:
A 3-D tensor of shape (N, T, C)
Returns:
Return a 3-D tensor of shape (N, T', joiner_dim) where
T' is usually equal to ((T-7)//2+1)//2
"""
encoder_input, encoder_output_names = self._build_encoder_input_output(x)
out = model_inference(encoder_input, self.encoder, False)
# convert dict to list
out_L = [out[v] for v in encoder_output_names]
# print(encoder_output_names)
# print(out.keys())
self._update_states(out_L[1:])
return torch.from_numpy(out_L[0])
def run_decoder(self, decoder_input: torch.Tensor) -> torch.Tensor:
"""
Args:
decoder_input:
A 2-D tensor of shape (N, context_size)
Returns:
Return a 2-D tensor of shape (N, joiner_dim)
"""
out = model_inference({'y':decoder_input.numpy().astype(np.uint16)}, self.decoder, False)
return torch.from_numpy(out['decoder_out_Gemm_f32'])
def run_joiner(
self, encoder_out: torch.Tensor, decoder_out: torch.Tensor
) -> torch.Tensor:
"""
Args:
encoder_out:
A 2-D tensor of shape (N, joiner_dim)
decoder_out:
A 2-D tensor of shape (N, joiner_dim)
Returns:
Return a 2-D tensor of shape (N, vocab_size)
"""
out = model_inference({'encoder_out':encoder_out.numpy(), 'decoder_out':decoder_out.numpy()}, self.joiner, False)
return torch.from_numpy(out['logit_Gemm_f32'])
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0].contiguous())
return ans
def create_streaming_feature_extractor() -> OnlineFeature:
"""Create a CPU streaming feature extractor.
At present, we assume it returns a fbank feature extractor with
fixed options. In the future, we will support passing in the options
from outside.
Returns:
Return a CPU streaming feature extractor.
"""
opts = FbankOptions()
opts.device = "cpu"
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = 16000
opts.mel_opts.num_bins = 80
opts.mel_opts.high_freq = -400
return OnlineFbank(opts)
def greedy_search(
model: CviModel,
encoder_out: torch.Tensor,
context_size: int,
decoder_out: Optional[torch.Tensor] = None,
hyp: Optional[List[int]] = None,
) -> List[int]:
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
Args:
model:
The transducer model.
encoder_out:
A 3-D tensor of shape (1, T, joiner_dim)
context_size:
The context size of the decoder model.
decoder_out:
Optional. Decoder output of the previous chunk.
hyp:
Decoding results for previous chunks.
Returns:
Return the decoded results so far.
"""
blank_id = 0
if decoder_out is None:
assert hyp is None, hyp
hyp = [blank_id] * context_size
decoder_input = torch.tensor([hyp], dtype=torch.int64)
decoder_out = model.run_decoder(decoder_input)
else:
assert hyp is not None, hyp
encoder_out = encoder_out.squeeze(0)
T = encoder_out.size(0)
for t in range(T):
cur_encoder_out = encoder_out[t : t + 1]
joiner_out = model.run_joiner(cur_encoder_out, decoder_out).squeeze(0)
y = joiner_out.argmax(dim=0).item()
if y != blank_id:
hyp.append(y)
decoder_input = hyp[-context_size:]
decoder_input = torch.tensor([decoder_input], dtype=torch.int64)
decoder_out = model.run_decoder(decoder_input)
return hyp, decoder_out
def tokens_fromfile(filename: str) -> Dict[int, str]:
ans = {}
with open(filename, "r") as f:
for line in f:
line = line.strip()
if not line:
continue
fields = line.split()
assert len(fields) == 2, fields
idx = int(fields[1])
token = fields[0]
ans[idx] = token
return ans
# @torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
print(vars(args))
model = CviModel(
encoder_model_filename=args.encoder_model_filename,
decoder_model_filename=args.decoder_model_filename,
joiner_model_filename=args.joiner_model_filename,
)
sample_rate = 16000
print("Constructing Fbank computer")
online_fbank = create_streaming_feature_extractor()
print(f"Reading sound files: {args.sound_file}")
waves = read_sound_files(
filenames=[args.sound_file],
expected_sample_rate=sample_rate,
)[0]
tail_padding = torch.zeros(int(0.3 * sample_rate), dtype=torch.float32)
wave_samples = torch.cat([waves, tail_padding])
num_processed_frames = 0
segment = model.segment
offset = model.offset
context_size = model.context_size
hyp = None
decoder_out = None
chunk = int(1 * sample_rate) # 1 second
start = 0
while start < wave_samples.numel():
end = min(start + chunk, wave_samples.numel())
samples = wave_samples[start:end]
start += chunk
online_fbank.accept_waveform(
sampling_rate=sample_rate,
waveform=samples,
)
while online_fbank.num_frames_ready - num_processed_frames >= segment:
frames = []
for i in range(segment):
frames.append(online_fbank.get_frame(num_processed_frames + i))
num_processed_frames += offset
frames = torch.cat(frames, dim=0)
frames = frames.unsqueeze(0)
encoder_out = model.run_encoder(frames)
hyp, decoder_out = greedy_search(
model,
encoder_out,
context_size,
decoder_out,
hyp,
)
symbol_table = tokens_fromfile(args.tokens)
text = ""
for i in hyp[context_size:]:
text += symbol_table[i]
text = text.replace("▁", " ").strip()
print(args.sound_file)
print(text)
print("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
# logging.basicConfig(format=formatter, level=print)
main()