-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetkeypoint.py
88 lines (71 loc) · 2.82 KB
/
getkeypoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import argparse
import csv
import cv2
import itertools
import mediapipe as mp
import numpy as np
import time
from utils import *
parser = argparse.ArgumentParser()
parser.add_argument("--device", type=int, default=0)
args = parser.parse_args()
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
prev_frame_time = 0
new_frame_time = 0
read = False
# For webcam input:
cap = cv2.VideoCapture(args.device)
with mp_hands.Hands(
max_num_hands=1,
model_complexity=0,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as hands:
while cap.isOpened():
key = cv2.waitKey(10)
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = hands.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
landmark_list = calc_landmark_list(image, hand_landmarks)
pre_processed_landmark_list = pre_process_landmark(landmark_list)
pre_processed_landmark_list = np.array(pre_processed_landmark_list)
np.set_printoptions(precision=2)
if key == ord("t"):
read = not read
print(read)
if ord('0') <= key <= ord('9') or ord('A') <= key <= ord('Z'):
number = key - 48
print(number, read)
if read:
logging_csv(number, pre_processed_landmark_list)
new_frame_time = time.time()
fps = 1//(new_frame_time-prev_frame_time)
prev_frame_time = new_frame_time
fps = str(fps)
# Flip the image horizontally for a selfie-view display.
image = cv2.flip(image, 1)
cv2.putText(image, fps, (7, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 3, cv2.LINE_AA)
cv2.imshow('Hand Gesture Detection', image)
if key & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()