-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDemo.java
157 lines (132 loc) · 5.9 KB
/
Demo.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import IA.Bicing.Estaciones;
import practica.PracBoard;
import practica.PracGoalTest;
import practica.PracHeuristicFunction;
import practica.PracSuccessorFunction;
import java.text.DecimalFormat;
import java.util.List;
import java.util.Random;
import aima.search.framework.Problem;
import aima.search.framework.Search;
import aima.search.framework.SearchAgent;
import aima.search.informed.HillClimbingSearch;
import aima.search.informed.SimulatedAnnealingSearch;
public class Demo
{
private static final int ARGCOUNT = 9;
private static final int ITERS_IF_RANDOM = 5;
private static int ITERS = 1;
private static final int SA_TEMP = 500000;
private static final int SA_ITER = 1;
private static final int SA_K = 5;
private static final double SA_LAMBDA = 0.01;
public static void main(String args[]) throws Exception
{
if(args.length != ARGCOUNT)
{
System.out.println("Has proporcionado " + args.length + " argumentos.");
System.out.println("Usage: ./ejecuta.sh Demo [seed] [num_ests] [num_bicicletas] [max_furgonetas] [HC|SA] [Heur1|Heur2] [RUSH|EQUIL] [greedy|vacia|random]");
System.exit(1);
}
//Else
int seed = Integer.parseInt(args[1]);
int numEsts = Integer.parseInt(args[2]);
int numBicicletas = Integer.parseInt(args[3]);
int maxFurgonetas = Integer.parseInt(args[4]);
PracSuccessorFunction.SearchType searchType = PracSuccessorFunction.SearchType.HillClimbing;
if(args[5].equals("HC"))
searchType = PracSuccessorFunction.SearchType.HillClimbing;
else if(args[5].equals("SA"))
searchType = PracSuccessorFunction.SearchType.SimulatedAnnealing;
else
{
System.out.println("El argumento [HC|SA] proporcionado es incorrecto.\nArgumento proporcionado: " + args[5]);
System.exit(2);
}
PracHeuristicFunction.Function heurFunction = PracHeuristicFunction.Function.Heuristico_1;
if(args[6].equals("Heur1"))
heurFunction = PracHeuristicFunction.Function.Heuristico_1;
else if(args[6].equals("Heur2"))
heurFunction = PracHeuristicFunction.Function.Heuristico_2;
else
{
System.out.println("El argumento [Heur1|Heur2] proporcionado es incorrecto.\nArgumento proporcionado: " + args[6]);
System.exit(3);
}
int tipoDemanda = Estaciones.EQUILIBRIUM;
if(args[7].equals("RUSH"))
tipoDemanda = Estaciones.RUSH_HOUR;
else if(args[7].equals("EQUIL"))
tipoDemanda = Estaciones.EQUILIBRIUM;
else
{
System.out.println("El argumento [RUSH|EQUIL] proporcionado es incorrecto.\nArgumento proporcionado: " + args[7]);
System.exit(4);
}
PracBoard.TipoSolucion tipoSolucion = PracBoard.TipoSolucion.GREEDY2;
if(args[8].equals("greedy"))
tipoSolucion = PracBoard.TipoSolucion.GREEDY2;
else if(args[8].equals("random"))
{
tipoSolucion = PracBoard.TipoSolucion.RANDOM;
ITERS = ITERS_IF_RANDOM;
}
else if(args[8].equals("vacia"))
tipoSolucion = PracBoard.TipoSolucion.VACIA;
else
{
System.out.println("El argumento [greedy|vacia|random] proporcionado es incorrecto.\nArgumento proporcionado: " + args[8]);
System.exit(5);
}
Estaciones estaciones = new Estaciones(numEsts, numBicicletas, tipoDemanda, seed);
Random random = new Random(System.currentTimeMillis());
PracBoard mejorBoard = new PracBoard(estaciones, maxFurgonetas);
double heur = 10000.0;
SearchAgent mejorAgent = null;
double tiempo = 0.0;
for(int i = 0; i < ITERS; ++i)
{
int solSeed = random.nextInt();
PracBoard board = new PracBoard(estaciones, maxFurgonetas);
board.creaSolucionInicial(tipoSolucion, solSeed);
Problem p = new Problem(board, new PracSuccessorFunction(searchType), new PracGoalTest(), new PracHeuristicFunction(heurFunction));
Search alg;
if(searchType == PracSuccessorFunction.SearchType.HillClimbing)
alg = new HillClimbingSearch();
else
alg = new SimulatedAnnealingSearch(SA_TEMP, SA_ITER, SA_K, SA_LAMBDA);
double startTime = System.nanoTime();
SearchAgent agent = new SearchAgent(p, alg);
double endTime = System.nanoTime();
double tiempoMS = (endTime-startTime)/1000000;
tiempo += tiempoMS;
PracBoard goalBoard = (PracBoard)alg.getGoalState();
double heuristic = goalBoard.heuristicFunction(heurFunction);
if(heuristic < heur)
{
mejorBoard = goalBoard;
mejorAgent = agent;
heur = heuristic;
}
}
if(searchType == PracSuccessorFunction.SearchType.HillClimbing)
{
System.out.println("Operadores aplicados:");
printActions(mejorAgent.getActions());
System.out.println();
}
mejorBoard.print();
mejorBoard.beneficioTotal(true);
DecimalFormat dFormat = new DecimalFormat("0.00");
System.out.println("Ganancia (bicicletas bien transportadas): " + mejorBoard.beneficioTotal(false) + " euros");
System.out.println("Beneficio (ganancia menos coste): " + dFormat.format(mejorBoard.getBeneficioReal()) + " euros");
System.out.println("Distancia recorrida: " + dFormat.format(mejorBoard.getTotalTravelDist()) + "m");
System.out.println("Tiempo de cálculo: " + dFormat.format(tiempo) + "ms");
}
private static void printActions(List actions) {
for (int i = 0; i < actions.size(); i++) {
String action = (String) actions.get(i);
System.out.println(action);
}
}
}