-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix.js
325 lines (266 loc) · 7.3 KB
/
matrix.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
function identity(out) {
for (var i = 0; i < 16; i++) {
out[i] = 0
}
out[0] = 1
out[5] = 1
out[10] = 1
out[15] = 1
return out
}
function translate(out, inMat, v) { // different in glMatrix
var x = v[0]
var y = v[1]
var z = v[2]
out[12] = x*inMat[0] + y*inMat[4] + z*inMat[8] + inMat[12]
out[13] = x*inMat[1] + y*inMat[5] + z*inMat[9] + inMat[13]
out[14] = x*inMat[2] + y*inMat[6] + z*inMat[10] + inMat[14]
out[15] = x*inMat[3] + y*inMat[7] + z*inMat[11] + inMat [15]
return out
}
function scale(out, inMat, v) { // multiply each column with corresponding vector coordinate. WebGL works in columns
var x = v[0]
var y = v[1]
var z = v[2]
out[0] = inMat[0] * x
out[1] = inMat[1] * x
out[2] = inMat[2] * x
out[3] = inMat[3] * x
out[4] = inMat[4] * y
out[5] = inMat[5] * y
out[6] = inMat[6] * y
out[7] = inMat[7] * y
out[8] = inMat[8] * z
out[9] = inMat[9] * z
out[10] = inMat[10] * z
out[11] = inMat[11] * z
out[12] = inMat[12]
out[13] = inMat[13]
out[14] = inMat[14]
out[15] = inMat[15]
return out
}
function rotateY(out, inMat, rad) {
var sin = Math.sin(rad)
var cos = Math.cos(rad)
out[0] = inMat[0]*cos - inMat[8]*sin
out[1] = inMat[1]*cos - inMat[9]*sin
out[2] = inMat[2]*cos - inMat[10]*sin
out[3] = inMat[3]*cos - inMat[11]*sin
out[4] = inMat[4]
out[5] = inMat[5]
out[6] = inMat[6]
out[7] = inMat[7]
out[8] = inMat[0]*sin + inMat[8]*cos
out[9] = inMat[1]*sin + inMat[9]*cos
out[10] = inMat[2]*sin + inMat[10]*cos
out[11] = inMat[3]*sin + inMat[11]*cos
out[12] = inMat[12]
out[13] = inMat[13]
out[14] = inMat[14]
out[15] = inMat[15]
return out
}
function rotateX(out, inMat, rad) {
var sin = Math.sin(rad)
var cos = Math.cos(rad)
out[0] = inMat[0]
out[1] = inMat[1]
out[2] = inMat[2]
out[3] = inMat[3]
out[4] = inMat[4]*cos + inMat[8]*sin
out[5] = inMat[5]*cos + inMat[9]*sin
out[6] = inMat[6]*cos + inMat[10]*sin
out[7] = inMat[7]*cos + inMat[11]*sin
out[8] = inMat[8]*cos - inMat[4]*sin
out[9] = inMat[9]*cos - inMat[5]*sin
out[10] = inMat[10]*cos - inMat[6]*sin
out[11] = inMat[11]*cos - inMat[7]*sin
out[12] = inMat[12]
out[13] = inMat[13]
out[14] = inMat[14]
out[15] = inMat[15]
}
function lookAt(out, eye, look, up) {
// rotation matrix
var n = new Float32Array(3)
n[0] = eye[0] - look[0]
n[1] = eye[1] - look[1]
n[2] = eye[2] - look[2]
normalize(n, n)
var u = new Float32Array(3)
crossProductOf(u, up, n)
normalize(u, u)
var v = new Float32Array(3)
crossProductOf(v, n, u)
normalize(v, v)
out[0] = u[0]
out[1] = v[0]
out[2] = n[0]
out[3] = 0
out[4] = u[1]
out[5] = v[1]
out[6] = n[1]
out[7] = 0
out[8] = u[2]
out[9] = v[2]
out[10] = n[2]
out[11] = 0
// transaltion
out[12] = -(u[0]*eye[0] + u[1]*eye[1] + u[2]*eye[2])
out[13] = -(v[0]*eye[0] + v[1]*eye[1] + v[2]*eye[2])
out[14] = -(n[0]*eye[0] + n[1]*eye[1] + n[2]*eye[2])
out[15] = 1
return out
}
function perspective(out, fovy, aspect, near, far) { // fovy is vertical field of view in radians
var f = 1.0 / Math.tan(fovy / 2)
out[0] = f / aspect
out[1] = 0
out[2] = 0
out[3] = 0
out[4] = 0
out[5] = f
out[6] = 0
out[7] = 0
out[8] = 0
out[9] = 0
out[11] = -1
out[12] = 0
out[13] = 0
out[15] = 0
if (far != null && far != Infinity) {
var nf = 1 / (near - far)
out[10] = (far + near) * nf
out[14] = 2 * far * near * nf
} else {
out[10] = -1
out[14] = -2 * near
}
return out
}
function crossProductOf(out, first, second) {
out[0] = first[1]*second[2] - first[2]*second[1]
out[1] = first[2]*second[0] - first[0]*second[2]
out[2] = first[0]*second[1] - first[1]*second[0]
return out;
}
function normalize(out, inVec) {
const factor = 1/Math.hypot(inVec[0], inVec[1], inVec[2])
out[0] = factor * inVec[0]
out[1] = factor * inVec[1]
out[2] = factor * inVec[2]
return inVec
}
function multiply(out, a, b) {
const a00 = a[0]
const a01 = a[4]
const a02 = a[8]
const a03 = a[12]
const a10 = a[1]
const a11 = a[5]
const a12 = a[9]
const a13 = a[13]
const a20 = a[2]
const a21 = a[6]
const a22 = a[10]
const a23 = a[14]
const a30 = a[3]
const a31 = a[7]
const a32 = a[11]
const a33 = a[15]
const b00 = b[0]
const b01 = b[4]
const b02 = b[8]
const b03 = b[12]
const b10 = b[1]
const b11 = b[5]
const b12 = b[9]
const b13 = b[13]
const b20 = b[2]
const b21 = b[6]
const b22 = b[10]
const b23 = b[14]
const b30 = b[3]
const b31 = b[7]
const b32 = b[11]
const b33 = b[15]
out[0] = a00*b00 + a01*b10 + a02*b20 + a03*b30
out[1] = a10*b00 + a11*b10 + a12*b20 + a13*b30
out[2] = a20*b00 + a21*b10 + a22*b20 + a23*b30
out[3] = a30*b00 + a31*b10 + a32*b20 + a33*b30
out[4] = a00*b01 + a01*b11 + a02*b21 + a03*b31
out[5] = a10*b01 + a11*b11 + a12*b21 + a13*b31
out[6] = a20*b01 + a21*b11 + a22*b21 + a23*b31
out[7] = a30*b01 + a31*b11 + a32*b21 + a33*b31
out[8] = a00*b02 + a01*b12 + a02*b22 + a03*b32
out[9] = a10*b02 + a11*b12 + a12*b22 + a13*b32
out[10] = a20*b02 + a21*b12 + a22*b22 + a23*b32
out[11] = a30*b02 + a31*b12 + a32*b22 + a33*b32
out[12] = a00*b03 + a01*b13 + a02*b23 + a03*b33
out[13] = a10*b03 + a11*b13 + a12*b23 + a13*b33
out[14] = a20*b03 + a21*b13 + a22*b23 + a23*b33
out[15] = a30*b03 + a31*b13 + a32*b23 + a33*b33
return out
}
// 00, 01, 02
// 03, 04, 05
// 06, 07, 08
function inverse3x3(out, inMat) {
let in00 = inMat[0]
let in01 = inMat[3]
let in02 = inMat[6]
let in03 = inMat[1]
let in04 = inMat[4]
let in05 = inMat[7]
let in06 = inMat[2]
let in07 = inMat[5]
let in08 = inMat[8]
let d00 = in04*in08 - in05*in07
let d01 = -1.0*(in03*in08 - in05*in06)
let d02 = in03*in07 - in04*in06
let d03 = -1.0*(in01*in08 - in02*in07)
let d04 = in00*in08 - in02*in06
let d05 = -1.0*(in00*in07 - in01*in06)
let d06 = in01*in05 - in02*in04
let d07 = -1.0*(in00*in05 - in02*in03)
let d08 = in00*in04 - in01*in03
let d = 1.0/(in00*d00 + in01*d01 + in02*d02)
out[0] = d*d00
out[1] = d*d01
out[2] = d*d02
out[3] = d*d03
out[4] = d*d04
out[5] = d*d05
out[6] = d*d06
out[7] = d*d07
out[8] = d*d08
return out
}
function transpose(out, inMat){
out[0] = inMat[0]
out[1] = inMat[3]
out[2] = inMat[6]
out[3] = inMat[1]
out[4] = inMat[4]
out[5] = inMat[7]
out[6] = inMat[2]
out[7] = inMat[5]
out[8] = inMat[8]
return out
}
function normalMatrixFrom(out, worldMatrix, viewMatrix) {
let modelViewMatrix = new Float32Array(16)
multiply(modelViewMatrix, worldMatrix, viewMatrix)
out[0] = modelViewMatrix[0]
out[1] = modelViewMatrix[1]
out[2] = modelViewMatrix[2]
out[3] = modelViewMatrix[4]
out[4] = modelViewMatrix[5]
out[5] = modelViewMatrix[6]
out[6] = modelViewMatrix[8]
out[7] = modelViewMatrix[9]
out[8] = modelViewMatrix[10]
inverse3x3(out, out)
transpose(out, out)
}