-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdiff_main.py
351 lines (298 loc) · 14.8 KB
/
diff_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import torch
import fire
import random
import json
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from tqdm import tqdm
from pathlib import Path
from src.utils.model_utils import load_model_and_tokenizer, set_seed
from src.extraction import get_mean_activations
from src.utils.prompt_helper import load_dataset, tokenize_ICL
from src.delta import generate_token_step, generate_edited_model, controlled_gen_edited_model, generate_dynamic_edited_model
def main(
model_name: str = "mistralai/Mistral-7B-Instruct-v0.2", #"meta-llama/Meta-Llama-3-8B",# "stabilityai/stablelm-2-zephyr-1_6b",
load_in_8bit: bool = True,
dataset_A_name: str = "ITA",
dataset_B_name: str = "ENG",
icl_examples: int = 4,
pre_append_instruction: bool = True,
support: int = 30,
max_new_tokens: int = 30,
evaluation_size: int = 50,
debug: bool = False,
eval_dataset: str | None = None,
skip_eval: bool = False,
):
"""
Main function to compute the difference between the mean activations of two datasets
and generate the edited model outputs.
"""
if debug:
evaluation_size = 20
# model_name = "mistralai/Mistral-7B-Instruct-v0.2"
load_in_8bit = True
icl_examples = 0
_name_dataset_A = dataset_A_name.split("_")[0]
_name_dataset_B = dataset_B_name.split("_")[0]
assert _name_dataset_A != _name_dataset_B, "The two datasets (A, B) should be different"
path_to_output = (
f'./output/{model_name.split("/")[1]}/{dataset_A_name.split("_")[0]}/diff'
)
Path(path_to_output).mkdir(parents=True, exist_ok=True)
path_to_mean_activations_A = os.path.join(
path_to_output, f"mean_activations_A_icl{icl_examples}_tok{max_new_tokens}_{_name_dataset_A}.pt"
)
path_to_mean_activations_B = os.path.join(
path_to_output, f"mean_activations_B_icl{icl_examples}_tok{max_new_tokens}_{_name_dataset_B}.pt"
)
path_to_diff_mean_activations = os.path.join(
path_to_output, f"diff_mean_act_icl{icl_examples}_tok{max_new_tokens}_{_name_dataset_A}-{_name_dataset_B}.pt"
)
path_to_results = os.path.join(
path_to_output, f"results_icl{icl_examples}_tok{max_new_tokens}_{_name_dataset_A}-{_name_dataset_B}.json"
)
# load both datasets
dataset_a, instruction_a, _ = load_dataset(dataset_A_name)
dataset_a = list(map(lambda x: tuple(x.values()), dataset_a))
print(f"[-] Loading dataset A, len: {len(dataset_a)}")
dataset_b, instruction_b, _ = load_dataset(dataset_B_name)
dataset_b = list(map(lambda x: tuple(x.values()), dataset_b))
print(f"[-] Loading dataset B, len: {len(dataset_b)}")
# load model, tokenizer and config
model, tokenizer, config, device = load_model_and_tokenizer(
model_name=model_name,
load_in_8bit=load_in_8bit,
)
print(f'{model_name} on {device} device')
torch.set_grad_enabled(False)
set_seed(32)
# generate prompts from both datasets
tokenized_dict_a = tokenize_ICL(
tokenizer,
ICL_examples=icl_examples,
dataset=dataset_a,
pre_append_instruction=instruction_a if pre_append_instruction else None,
)
icl_tokens_A = tokenized_dict_a["tokenized_prompts"] # to compute the mean activations A (exp. behavior)
no_icl_tokens_A = tokenized_dict_a["tokenized_prompts_no_ICL"] # to evaluate the model (original and edited)
gold_labels_A = tokenized_dict_a["correct_outputs"] # gold labels (how the model should behave)
tokenized_dict_b = tokenize_ICL(
tokenizer,
ICL_examples=icl_examples,
dataset=dataset_b,
pre_append_instruction=instruction_b if pre_append_instruction else None,
)
icl_tokens_B = tokenized_dict_b["tokenized_prompts"] # to compute the mean activations B (refused behavior)
assert len(icl_tokens_A) == len(icl_tokens_B), "The two datasets should have the same number of examples"
num_of_examples = min(len(icl_tokens_A), support)
print(f"Using {num_of_examples} examples to compute the mean activations")
if not os.path.exists(path_to_mean_activations_A):
# select random prompts from the dataset
random_indexes = [random.randint(0, len(icl_tokens_A) - 1) for _ in range(num_of_examples)]
print(f'[x] Computing mean activations for dataset')
random_icl_tokens_A = [icl_tokens_A[i] for i in random_indexes]
mean_activations_A = get_mean_activations(
tokenized_prompts=random_icl_tokens_A,
tokenizer=tokenizer,
model=model,
config=config,
device=device,
max_new_tokens=max_new_tokens,
)
torch.save(mean_activations_A, path_to_mean_activations_A)
random_icl_tokens_B = [icl_tokens_B[i] for i in random_indexes]
mean_activations_B = get_mean_activations(
tokenized_prompts=random_icl_tokens_B,
tokenizer=tokenizer,
model=model,
config=config,
device=device,
max_new_tokens=max_new_tokens,
)
torch.save(mean_activations_B, path_to_mean_activations_B)
else:
print(f'[-] Found mean activations for dataset. Loading them')
mean_activations_A = torch.load(path_to_mean_activations_A)
mean_activations_B = torch.load(path_to_mean_activations_B)
# compute the difference between the two mean activations
diff_mean_activations = mean_activations_A - mean_activations_B
print(f'{diff_mean_activations.shape = }')
# store the activation difference
torch.save(diff_mean_activations, path_to_diff_mean_activations)
diff_mean_activations = diff_mean_activations.to(device)
if skip_eval:
print("[x] Skipping evaluation")
return
# evaluate the model
if eval_dataset is not None:
dataset_eval, instruction_eval, _ = load_dataset(eval_dataset)
dataset_eval = list(map(lambda x: tuple(x.values()), dataset_eval)
)
print(f"[-] Loading evaluation dataset, len: {len(dataset_eval)}")
tokenized_dict_eval = tokenize_ICL(
tokenizer,
ICL_examples=icl_examples,
dataset=dataset_eval,
pre_append_instruction=instruction_eval if pre_append_instruction else None,
)
# replace the current dataset with the new one
icl_tokens_A = tokenized_dict_eval["tokenized_prompts"]
no_icl_tokens_A = tokenized_dict_eval["tokenized_prompts_no_ICL"]
gold_labels_A = tokenized_dict_eval["correct_outputs"]
num_of_examples_evaluation = min(len(no_icl_tokens_A), evaluation_size)
print(f"[-] Using {num_of_examples_evaluation} examples to evaluate the model")
eval_idxs = list(range(num_of_examples_evaluation)) # do not randomize
else:
num_of_examples_evaluation = min(len(icl_tokens_B), evaluation_size)
print(f"[-] Using {num_of_examples_evaluation} examples to evaluate the model")
# eval_idxs = [random.randint(0, len(icl_tokens_B) - 1) for _ in range(num_of_examples_evaluation)]
eval_idxs = list(range(num_of_examples_evaluation)) # do not randomize
# NOTE: start for the results to be stored
results = []
pbar = tqdm(eval_idxs, total=num_of_examples_evaluation, desc="[x] Generating and editing model")
for idx_prompt in pbar:
current_prompt_noicl = no_icl_tokens_A[idx_prompt].to(device)
current_prompt_icl = icl_tokens_A[idx_prompt].to(device)
output_to_write = {}
ppls_to_write = {}
additional_to_write = {}
# NOTE: Build the current prompt with the ICL (A) to evaluate the differences between the ICL approach and the diff approach
pbar.set_description(f"[x] Generating and editing model [icl]")
output_icl, nlls = generate_token_step(
model, current_prompt_icl, max_new_tokens, return_ppl=True,
)
icl_only_output_ids = output_icl.squeeze()[current_prompt_icl.shape[0]:]
decoded_icl = tokenizer.decode(
icl_only_output_ids,
skip_special_tokens=True
)
output_to_write["icl"] = decoded_icl
perplexity_icl_baseline = torch.exp(torch.tensor(nlls).mean()).cpu().item()
ppls_to_write["icl"] = perplexity_icl_baseline
# NOTE: No ICL approach
pbar.set_description(f"[x] Generating and editing model [no icl]")
output_noicl = generate_token_step(
model, current_prompt_noicl, max_new_tokens,
)
decoded_noicl = tokenizer.decode(
output_noicl.squeeze()[current_prompt_noicl.shape[0]:],
skip_special_tokens=True,
)
output_to_write["no_icl"] = decoded_noicl
additional_to_write = {}
dy_start_alpha = 2.0
for top_p in [0.5, 0.6, 0.7, 0.95]:
pbar.set_description(f"[x] Generating and editing model [dynamic alpha {dy_start_alpha}]")
output_dynamic, alpha_used, real_kls = generate_dynamic_edited_model(
model, config,
no_icl_prompt=current_prompt_noicl,
max_new_tokens=max_new_tokens,
diff_mean_activations=diff_mean_activations,
starting_alpha=dy_start_alpha,
top_p=top_p,
)
decoded_noicl_B_dynamic = tokenizer.decode(
output_dynamic.squeeze()[current_prompt_noicl.shape[0]:],
skip_special_tokens=True
)
output_to_write[f"dynamic_p{top_p}"] = decoded_noicl_B_dynamic
additional_to_write[f"{top_p}_dynamic_alphas"] = alpha_used
additional_to_write[f"{top_p}_dynamic_kls"] = real_kls
pbar.set_description(f"[x] Generating and editing model [dynamic alpha - ppl]")
_, nlls = controlled_gen_edited_model(
model, config, current_prompt_noicl, max_new_tokens,
diff_mean_activations,
gold_out=icl_only_output_ids,
alpha_factor=alpha_used,
)
perplexity = torch.exp(torch.tensor(nlls).mean()).cpu().item()
ppls_to_write[f"delta_dynamic_{top_p}"] = perplexity - perplexity_icl_baseline
# NOTE: No ICL edited (different alpha factors)
alphas: list[float] = [-1.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0]
# print(f'\n[NO ICL EDITED] ... (exp. gold behavior)')
for alpha_factor in alphas:
# NOTE: No ICL edited (plain alpha)
pbar.set_description(f"[x] Generating and editing model [edited_{alpha_factor}]")
output_noicl_B_edited = generate_edited_model(
model, config, current_prompt_noicl, max_new_tokens,
diff_mean_activations,
alpha_factor=alpha_factor,
)
decoded_noicl_B_edited = tokenizer.decode(
output_noicl_B_edited.squeeze()[current_prompt_noicl.shape[0]:],
skip_special_tokens=True
)
output_to_write[f"edited_{alpha_factor}"] = decoded_noicl_B_edited
pbar.set_description(f"[x] Generating and editing model [edited_{alpha_factor} - ppl]")
_, nlls = controlled_gen_edited_model(
model, config, current_prompt_noicl, max_new_tokens,
diff_mean_activations,
gold_out=icl_only_output_ids,
alpha_factor=alpha_factor,
)
perplexity = torch.exp(torch.tensor(nlls).mean()).cpu().item()
ppls_to_write[f"delta_edited_{alpha_factor}"] = perplexity - perplexity_icl_baseline
# NOTE: No ICL edited (diminishing and start alpha)
if alpha_factor > 0.5:
# NOTE: start alpha
pbar.set_description(f"[x] Generating and editing model [editedSTART_{alpha_factor}]")
output_noicl_B_edited = generate_edited_model(
model, config, current_prompt_noicl, max_new_tokens,
diff_mean_activations,
alpha_factor=alpha_factor,
only_start_token=True,
)
decoded_noicl_B_edited = tokenizer.decode(
output_noicl_B_edited.squeeze()[current_prompt_noicl.shape[0]:],
skip_special_tokens=True
)
output_to_write[f"editedSTART_{alpha_factor}"] = decoded_noicl_B_edited
# compute perplexity on ICL output
pbar.set_description(f"[x] Generating and editing model [editedSTART_{alpha_factor} - ppl]")
_, nlls = controlled_gen_edited_model(
model, config, current_prompt_noicl, max_new_tokens,
diff_mean_activations,
gold_out=icl_only_output_ids,
alpha_factor=alpha_factor,
only_start_token=True,
)
perplexity = torch.exp(torch.tensor(nlls).mean()).cpu().item()
ppls_to_write[f"delta_editedSTART_{alpha_factor}"] = perplexity - perplexity_icl_baseline
# NOTE: diminishing alpha
pbar.set_description(f"[x] Generating and editing model [editedDIM_{alpha_factor}]")
output_noicl_B_edited = generate_edited_model(
model, config, current_prompt_noicl, max_new_tokens,
diff_mean_activations,
alpha_factor=alpha_factor,
diminishing_alpha=True,
)
decoded_noicl_B_edited = tokenizer.decode(
output_noicl_B_edited.squeeze()[current_prompt_noicl.shape[0]:],
skip_special_tokens=True
)
output_to_write[f"editedDIM_{alpha_factor}"] = decoded_noicl_B_edited
pbar.set_description(f"[x] Generating and editing model [editedDIM_{alpha_factor} - ppl]")
# compute perplexity on ICL output
_, nlls = controlled_gen_edited_model(
model, config, current_prompt_noicl, max_new_tokens,
diff_mean_activations,
gold_out=icl_only_output_ids,
alpha_factor=alpha_factor,
diminishing_alpha=True,
)
perplexity = torch.exp(torch.tensor(nlls).mean()).cpu().item()
ppls_to_write[f"delta_editedDIM_{alpha_factor}"] = perplexity - perplexity_icl_baseline
res_struct = {
"prompt": tokenizer.decode(no_icl_tokens_A[idx_prompt], skip_special_tokens=True),
"gold": gold_labels_A[idx_prompt],
"output": output_to_write,
"perplexity": ppls_to_write,
"additional": additional_to_write,
}
results.append(res_struct)
# save the results
with open(path_to_results, "w+", encoding="utf-8") as f:
json.dump(results, f, indent=4, ensure_ascii=False)
if __name__ == "__main__":
fire.Fire(main)