-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
83 lines (67 loc) · 2.43 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
from PIL import Image
import os
import sys
import json
import time
import argparse
import torch
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import (
process_images,
tokenizer_image_token,
get_model_name_from_path,
)
from lib.mapper import Mapper
from lib.predictor import su_inference,su_inference_gr
import warnings
warnings.filterwarnings("ignore")
# 定义Args类
class Args:
def __init__(self, image_file):
self.model_path = "liuhaotian/llava-v1.6-vicuna-7b"
self.model_base = None
self.model_name = get_model_name_from_path(self.model_path)
self.query = None
self.conv_mode = None
self.image_file = image_file
self.sep = ","
self.temperature = 0.1
self.top_p = 0.99
self.num_beams = 1
self.max_new_tokens = 32
model_name = get_model_name_from_path("liuhaotian/llava-v1.6-vicuna-7b")
tokenizer, model, image_processor, context_len = load_pretrained_model(
"liuhaotian/llava-v1.6-vicuna-7b", None, model_name)
print(f'\n ** finish loading model {model_name} ** \n')
with open('/root/LLaVA_SU/su_prompts/prompt.json', 'r') as f:
query_dict = json.load(f)
print(f'query_dict:\n{query_dict}\n')
def inference(image):
args = Args(image)
answer_dict = su_inference_gr(args, model_name, tokenizer, model, image_processor, image, query_dict)
mapper = Mapper(answer_dict)
bool_dict = mapper.answer2bool()
return bool_dict
examples = [
["/root/LLaVA_SU/su_data/eval_10/illegal_parking_1.jpg"],
["/root/LLaVA_SU/su_data/eval_10/ped_on_lawn_10.jpg"],
["/root/LLaVA_SU/su_data/eval_10/smoking_1.jpg"],
["/root/LLaVA_SU/su_data/eval_10/crowded_2.jpg"],
["/root/LLaVA_SU/su_data/eval_10/ped_on_lawn_6.jpg"],
["/root/LLaVA_SU/su_data/eval_10/trash_5.jpg"],
["/root/LLaVA_SU/su_data/eval_10/fire_1.jpg"]
]
interface = gr.Interface(
fn=inference,
inputs=gr.Image(type="pil"),
outputs=gr.JSON(),
title="Multimodal-Large-Language-Model-Scenario-Understanding-Demo",
description="Choose a preset image or upload your own image to classify issues --> \
Smoking / Pedestrian step on lawn / On Fire / Trash or Fallen Leaves / Crowded / Illegal parking / Hailing",
examples=examples
)
if __name__ == "__main__":
interface.launch(share=True)