-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
209 lines (172 loc) · 10.1 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import json
import pandas as pd
import numpy as np
from abc import ABC, abstractmethod
from datetime import datetime
from shapely.geometry import MultiPolygon, shape
class Dataset:
def __init__(self) -> None:
# self.gangnam = self.GangnamDataset()
self.sanfrancisco = self.SanFranciscoDataset()
class CityDataset(ABC):
_congestion_tci: int
_file_names: dict[str, str]
_ffs_df: pd.DataFrame
_road_tci_time_df: pd.DataFrame
_start_date: datetime
_end_date: datetime
_start_time: int
_end_time: int
district_list: list[str]
district_roads: dict[str, pd.DataFrame]
center_coords: dict[str, tuple]
def _get_center_coords(self, feature: dict) -> tuple:
geom = shape(feature['geometry'])
if isinstance(geom, MultiPolygon):
center = geom.centroid
return (center.x, center.y)
raise(ValueError)
def _filter(self, df: pd.DataFrame, date_only=False) -> pd.DataFrame:
field = 'Date' if 'Date' in df.columns else 'Time' # 필터링할 필드
filtered = df[(df[field] >= self._start_date) & (df[field] <= self._end_date)] # 날짜 필터
if not date_only:
filtered = df[(df[field].dt.hour >= self._start_time) & (df[field].dt.hour <= self._end_time)] # 시간 필터
return filtered
def set_date_filter(self, start_date: str, end_date: str) -> None:
if start_date == 0 or end_date == -1:
return
if len(start_date) == len("0000-00-00"):
self._start_date = datetime.strptime(start_date, "%Y-%m-%d")
self._end_date = datetime.strptime(end_date, "%Y-%m-%d").replace(hour=23, minute=59, second=59)
else:
self._start_date = datetime.strptime(start_date, "%Y-%m-%d %H:%M:%S")
self._end_date = datetime.strptime(end_date, "%Y-%m-%d %H:%M:%S")
def set_time_filter(self, start_time: int, end_time: int) -> None:
self._start_time = start_time
self._end_time = end_time
def get_districts_status(self) -> dict[str, dict[int, float] | list[str]]:
road_tci_time_df = self._filter(self._road_tci_time_df) # 날짜, 시간 필터 적용
status = { # 초기화
'tci': {x: np.nan for x in self.district_roads.keys()},
'crr': {x: 0 for x in self.district_roads.keys()},
'sorted': list(self.district_roads.keys()),
}
min_series = road_tci_time_df.min()
for district in self.district_roads.keys():
# 조건 시간대의 TCI 평균 계산
status['tci'][district] = road_tci_time_df[self.district_roads[district]].sum().sum() / road_tci_time_df[self.district_roads[district]].count().sum()
# 조건 시간대 안에서 한 번이라도 혼잡 상태에 해당한 도로들은 모두 혼잡 도로로 카운트
for road in self.district_roads[district]:
if min_series[road] <= self._congestion_tci:
status['crr'][district] += 1
status['crr'][district] /= len(self.district_roads[district])
# 혼잡 도로순 정렬
status['sorted'] = sorted(status['sorted'], key=lambda x: status['crr'][x], reverse=True) # 내림차순
status['sorted'] = sorted(status['sorted'], key=lambda x: round(status['tci'][x], 2)) # 오름차순
return status
def get_overview_status(self) -> dict[str, dict[int, float | int]]:
road_tci_time_df = self._filter(self._road_tci_time_df, date_only=True) # 날짜 필터 적용
status = { # 초기화
'tci': {x: np.nan for x in range(0, 24)},
'nornn': {x: 0 for x in range(0, 24)},
}
# 시간 단위 평균 TCI
road_tci_time_df['Hour'] = road_tci_time_df['Time'].dt.hour
road_tci_time_df = road_tci_time_df.groupby('Hour').mean(numeric_only=True)
status['tci'] = road_tci_time_df.mean(axis=1).to_dict()
# 혼잡 도로 카운트
status['nornn'] = road_tci_time_df.applymap(lambda x: 1 if x <= self._congestion_tci else 0).sum(axis=1).to_dict()
return status
class GangnamDataset(CityDataset):
""" 강남 데이터셋 """
def __init__(self):
# 혼잡으로 분류하는 기준 TCI
self._congestion_tci = 0.4
# 데이터셋 파일 이름
self._file_names = {
"ffs": "static/data/gangnam/ffs_Gangnam.csv",
"speed": "static/data/gangnam/speed_gangnam_2020_1h.csv",
"districts": "static/data/gangnam/Analysis Neighborhoods(b).geojson",
"district_road_map": "static/data/sanfrancisco/districts/%s.csv",
"road_tci_date": "static/data/sanfrancisco/road_tci_date.csv",
"road_tci_time": "static/data/sanfrancisco/road_tci_time.csv",
"city_tci_date": "static/data/sanfrancisco/city_tci_date.csv",
"city_tci_time": "static/data/sanfrancisco/city_tci_time.csv",
"district_tci_date": "static/data/sanfrancisco/district_tci_date.csv",
"district_tci_time": "static/data/sanfrancisco/district_tci_time.csv",
"district_tci_date_transposed": "static/data/sanfrancisco/district_tci_date_transposed.csv",
"district_tci_time_transposed": "static/data/sanfrancisco/district_tci_time_transposed.csv",
}
# 데이터셋 로드
with open(self._file_names['districts']) as file:
geodata = json.load(file)
# FFS 데이터 로드
self._ffs_df = pd.read_csv(self._file_names['ffs'])
# TCI 데이터 로드
self._road_tci_time_df = pd.read_csv(self._file_names['road_tci_time']) # 각 도로의 시간별 TCI
self._road_tci_time_df['Time'] = pd.to_datetime(self._road_tci_time_df['Time'])
# District 이름 리스트
self.district_list = [feature['properties']['nhood'] for feature in geodata['features']]
# District 하위 도로의 리스트
self.district_roads = {}
for district in self.district_list:
filename = district.replace(" ", "_").replace("/", "_")
if not os.path.exists(self._file_names['district_road_map'] % filename):
continue
self.district_roads[district] = pd.read_csv(self._file_names['district_road_map'] % filename, dtype={'Road': str})['Road'].tolist()
# District 폴리곤들의 중심 좌표 리스트
self.center_coords = {}
for feature in geodata['features']:
self.center_coords[feature['properties']['nhood']] = self._get_center_coords(feature)
# 날짜, 시간 필터의 초기값으로 전체 범위 적용
self._start_date = min(self._road_tci_time_df.loc[:, 'Time'])
self._end_date = max(self._road_tci_time_df.loc[:, 'Time'])
self._start_time = 0
self._end_time = 24
class SanFranciscoDataset(CityDataset):
"""샌프란시스코 데이터셋"""
def __init__(self):
# 혼잡으로 분류하는 기준 TCI
self._congestion_tci = 0.4
# 데이터셋 파일 이름
self._file_names = {
"ffs": "static/data/sanfrancisco/ffs_san.csv",
"speed": "static/data/sanfrancisco/speed_san.csv",
"districts": "static/data/sanfrancisco/Analysis Neighborhoods(b).geojson",
"district_road_map": "static/data/sanfrancisco/districts/%s.csv",
"road_tci_date": "static/data/sanfrancisco/road_tci_date.csv",
"road_tci_time": "static/data/sanfrancisco/road_tci_time.csv",
"city_tci_date": "static/data/sanfrancisco/city_tci_date.csv",
"city_tci_time": "static/data/sanfrancisco/city_tci_time.csv",
"district_tci_date": "static/data/sanfrancisco/district_tci_date.csv",
"district_tci_time": "static/data/sanfrancisco/district_tci_time.csv",
"district_tci_date_transposed": "static/data/sanfrancisco/district_tci_date_transposed.csv",
"district_tci_time_transposed": "static/data/sanfrancisco/district_tci_time_transposed.csv",
}
# 데이터셋 로드
with open(self._file_names['districts']) as file:
geodata = json.load(file)
# FFS 데이터 로드
self._ffs_df = pd.read_csv(self._file_names['ffs'])
# TCI 데이터 로드
self._road_tci_time_df = pd.read_csv(self._file_names['road_tci_time']) # 각 도로의 시간별 TCI
self._road_tci_time_df['Time'] = pd.to_datetime(self._road_tci_time_df['Time'])
# District 이름 리스트
self.district_list = [feature['properties']['nhood'] for feature in geodata['features']]
# District 하위 도로의 리스트
self.district_roads = {}
for district in self.district_list:
filename = district.replace(" ", "_").replace("/", "_")
if not os.path.exists(self._file_names['district_road_map'] % filename):
continue
self.district_roads[district] = pd.read_csv(self._file_names['district_road_map'] % filename, dtype={'Road': str})['Road'].tolist()
# District 폴리곤들의 중심 좌표 리스트
self.center_coords = {}
for feature in geodata['features']:
self.center_coords[feature['properties']['nhood']] = self._get_center_coords(feature)
# 날짜, 시간 필터의 초기값으로 전체 범위 적용
self._start_date = min(self._road_tci_time_df.loc[:, 'Time'])
self._end_date = max(self._road_tci_time_df.loc[:, 'Time'])
self._start_time = 0
self._end_time = 24