-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
52 lines (39 loc) · 1.86 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--train_file', default='/home/database')
parser.add_argument('--val_file', default='/home/database')
parser.add_argument('--test_file', default='/home/database')
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--node_size', default=127, type=int)
parser.add_argument('--layer_size', default=128, type=int)
parser.add_argument('--layer_depth', default=3, type=int)
parser.add_argument('--label_size', default=12, type=int)
parser.add_argument('--dropout', default=0.5, type=float)
parser.add_argument('--edge_size', default=12, type=int)
parser.add_argument('--heads', default=4, type=int)
parser.add_argument('--learning_rate', default=1e-3, type=float)
parser.add_argument('--decay', default=0.0, type=float)
parser.add_argument('--log_dir', default='/home/MultiChem/log')
parser.add_argument('--patience', default=50, type=int)
parser.add_argument('--epoch', default=5000, type=int)
parser.add_argument('--gpus', default=[3], nargs='+', type=int)
parser.add_argument('--learning', action='store_true')
parser.add_argument('--predict', action='store_true')
parser.add_argument('--task_type', default=0, choices=[0, 1], type=int, help='0 is classification, 1 is regression')
args = parser.parse_args()
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(i) for i in args.gpus)
args_dict = vars(args)
from multi_chem.learning.learner import learn_MultiChem
from multi_chem.learning.learner import learn_MultiChem_reg
if args_dict['task_type'] == 0:
learner = learn_MultiChem(**args_dict)
learner.run()
elif args_dict['task_type'] == 1:
learner = learn_MultiChem_reg(**args_dict)
learner.run()
else:
None