forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgoldg2odvg.py
136 lines (112 loc) · 4.16 KB
/
goldg2odvg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import argparse
import jsonlines
from pycocotools.coco import COCO
from tqdm import tqdm
def _has_only_empty_bbox(anno):
return all(any(o <= 1 for o in obj['bbox'][2:]) for obj in anno)
def has_valid_annotation(anno):
# if it's empty, there is no annotation
if len(anno) == 0:
return False
# if all boxes have close to zero area, there is no annotation
if _has_only_empty_bbox(anno):
return False
return True
def goldg2odvg(args):
coco = COCO(args.input)
ids = list(sorted(coco.imgs.keys()))
out_results = []
for img_id in tqdm(ids):
if isinstance(img_id, str):
ann_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=0)
else:
ann_ids = coco.getAnnIds(imgIds=img_id, iscrowd=0)
annos = coco.loadAnns(ann_ids)
if not has_valid_annotation(annos):
continue
img_info = coco.loadImgs(img_id)[0]
file_name = img_info['file_name']
caption = img_info['caption']
regions = {}
for anno in annos:
box = anno['bbox']
tokens_positive = anno['tokens_positive']
x1, y1, w, h = box
inter_w = max(0, min(x1 + w, int(img_info['width'])) - max(x1, 0))
inter_h = max(0, min(y1 + h, int(img_info['height'])) - max(y1, 0))
if inter_w * inter_h == 0:
continue
if anno['area'] <= 0 or w < 1 or h < 1:
continue
if anno.get('iscrowd', False):
continue
bbox_xyxy = [
x1, y1,
min(x1 + w, int(img_info['width'])),
min(y1 + h, int(img_info['height']))
]
tokens_positive = sorted(tokens_positive, key=lambda x: x[0])
phrase = []
pre_end_index = -10
for token in tokens_positive:
start_index = token[0]
end_index = token[1]
if pre_end_index + 1 == start_index:
if caption[token[0] - 1] == ' ':
phrase[
-1] = phrase[-1] + ' ' + caption[token[0]:token[1]]
else:
phrase.append(caption[token[0]:token[1]])
else:
phrase.append(caption[token[0]:token[1]])
pre_end_index = end_index
key = ' '.join(phrase)
if key not in regions:
regions[key] = {
'bbox': bbox_xyxy,
'phrase': phrase,
'tokens_positive': tokens_positive
}
else:
old_box = regions[key]['bbox']
if isinstance(old_box[0], list):
old_box.append(bbox_xyxy)
else:
old_box = [old_box, bbox_xyxy]
regions[key]['bbox'] = old_box
out_dict = {
'filename': file_name,
'height': int(img_info['height']),
'width': int(img_info['width']),
'grounding': {
'caption': caption
}
}
region_list = []
for key, value in regions.items():
phrase = value['phrase']
if len(phrase) == 1:
phrase = phrase[0]
region_list.append({
'bbox': value['bbox'],
'phrase': phrase,
'tokens_positive': value['tokens_positive']
})
out_dict['grounding']['regions'] = region_list
out_results.append(out_dict)
if args.out_ann is None:
out_path = args.input[:-5] + '_vg.json'
else:
out_path = args.out_ann
with jsonlines.open(out_path, mode='w') as writer:
writer.write_all(out_results)
print(f'save to {out_path}')
# goldg+: final_mixed_train_no_coco.json +
# final_flickr_separateGT_train.json +
# final_mixed_train_only_coco.json
if __name__ == '__main__':
parser = argparse.ArgumentParser('goldg to odvg format.', add_help=True)
parser.add_argument('input', type=str, help='input json file name')
parser.add_argument('--out-ann', '-o', type=str)
args = parser.parse_args()
goldg2odvg(args)