-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_coGAN.py
265 lines (216 loc) · 9.77 KB
/
train_coGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from tqdm import tqdm
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
from torch.nn.functional import interpolate
import torchvision.transforms as transforms
import numpy as np
import loss
from model import *
import utils
import argparse
import os
import time
from tensorboardX import SummaryWriter
from datasets import ImageNet
parser = argparse.ArgumentParser(description='PyTorch Incidents Training')
parser.add_argument('--train_root', default='/dataset/train', type=str)
parser.add_argument('--val_root', default='/dataset/val', type=str)
parser.add_argument('--epochs', default=40, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--nGpus', default=1, type=int, help='number of gpus to use')
parser.add_argument('--lr', '--learning-rate', default=3e-5, type=float,metavar='LR', help='initial learning rate')
parser.add_argument('--weight-decay', '--wd', default=1e-3, type=float,metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='models/model.pth.tar', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_false',help='use pre-trained model')
parser.add_argument('--reduced', dest='reduced', action='store_true', help='use reduced-model')
parser.add_argument('--run_dir', default='', type=str)
parser.add_argument('--kmeans_source', default='imagenet/', type=str)
def weights_init(m, args):
if isinstance(m, nn.Conv2d):
torch.nn.init.xavier_normal_(m.weight.data)
torch.init.constant_(m.bias.data, 0.1)
best_prec1 = 0
writer = SummaryWriter()
def main():
global args, best_prec1
args = parser.parse_args()
print(args)
if args.run_dir == '':
writer = SummaryWriter()
else:
print("=> Logs can be found in", args.run_dir)
writer = SummaryWriter(args.run_dir)
# create model
print("=> creating model")
model_G = nn.DataParallel(NNet(regr=False)).cuda().float()
model_D = nn.DataParallel(DCGAN()).cuda().float()
weights_init(model_G, args)
weights_init(model_D, args)
print("=> model weights initialized")
print(model_G)
print(model_D)
# optionally resume from a checkpoint
if args.resume:
for (path, net_G, net_D) in [(args.resume, model_G, model_D)]:
if os.path.isfile(path):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(path)
args.start_epoch = checkpoint['epoch']
net_G.load_state_dict(checkpoint['state_dict_G'])
net_D.load_state_dict(checkpoint['state_dict_D'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(path, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(path))
# Data loading code
train_root = args.train_root
train_dataset = ImageNet(train_root, output_full=True)
if not args.evaluate:
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True,num_workers=8, pin_memory=True)
print("=> Loaded data, length = ", len(train_dataset))
# define loss function (criterion) and optimizer
criterion_G = loss.classificationLoss
gann_loss = nn.BCEWithLogitsLoss().cuda()
def GANLoss(pred, is_real):
if is_real:
target = torch.ones_like(pred)
else:
target = torch.zeros_like(pred)
return gann_loss(pred, target)
criterion_GAN = GANLoss
optimizer_G = torch.optim.Adam([{'params': model_G.parameters()},], args.lr,weight_decay=args.weight_decay, betas=(0.9, 0.99))
optimizer_D = torch.optim.Adam([{'params': model_D.parameters()},], args.lr,weight_decay=args.weight_decay, betas=(0.9, 0.999))
for epoch in range(args.start_epoch, args.epochs):
print("=> Epoch", epoch, "started.")
adjust_learning_rate(optimizer_G, optimizer_D, epoch)
# train for one epoch
train(train_loader, model_G, model_D, criterion_G, criterion_GAN, optimizer_G, optimizer_D, epoch)
save_checkpoint({
'epoch': epoch + 1,
'state_dict_G': model_G.state_dict(),
'state_dict_D': model_D.state_dict(),
}, args.reduced)
print("=> Epoch", epoch, "finished.")
def train(train_loader, model_G, model_D, criterion_G, criterion_GAN, optimizer_G, optimizer_D, epoch):
model_D.train()
model_G.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses_L2 = AverageMeter()
losses_G = AverageMeter()
losses_D = AverageMeter()
end = time.time()
for i, (real, img_L, target) in enumerate(train_loader):
## Code for forward - backward - update pass in Generator and Discriminator
# Inspired by https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
data_time.update(time.time() - end)
var = Variable(img_L.float(), requires_grad=True).cuda()
real = Variable(real.float(), requires_grad=True).cuda()
target_class = Variable(utils.soft_encode_ab(target).float(), requires_grad=False).cuda()
# compute output G(L)
output = model_G(var)
# Update gradients for Discriminator
model_D.module.set_grads(True)
optimizer_D.zero_grad()
# Fake loss term
output_up = interpolate(utils.decode(output), scale_factor=4, mode='bilinear',
recompute_scale_factor=True, align_corners=True)
fake_img = torch.cat([var, output_up], 1)
fake_prob = model_D(fake_img.detach())
loss_D_fake = criterion_GAN(fake_prob, False)
# Real loss term
real_prob = model_D(real)
loss_D_real = criterion_GAN(real_prob, True)
loss_D = (loss_D_real + loss_D_fake)*0.5
if torch.isnan(loss_D):
print('NaN value encountered in loss_D.')
continue
loss_D.backward()
optimizer_D.step()
# Update gradients for Generator
model_D.module.set_grads(False)
optimizer_G.zero_grad()
fake_prob = model_D(fake_img)
# Fool the discriminator
loss_G_GAN = criterion_GAN(fake_prob, True)
# Regressor loss term
loss_G_L2 = criterion_G(output, target_class)
loss_G = loss_G_GAN + loss_G_L2*10
if torch.isnan(loss_G):
print('NaN value encountered in loss_G.')
continue
loss_G.backward()
optimizer_G.step()
losses_D.update(loss_D.data, var.size(0))
losses_G.update(loss_G_GAN.data, var.size(0))
losses_L2.update(loss_G_L2.data, var.size(0))
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss: G {loss_g.val:.4f} ({loss_g.avg:.4f})\t'
'D {loss_d.val:.4f} ({loss_d.avg:.4f})\t'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss_g=losses_G, loss_d=losses_D))
if (i+1) % 5000 == 0:
print("Saving checkpoint...")
save_checkpoint({
'epoch': epoch + 1,
'state_dict_G': model_G.state_dict(),
'state_dict_D': model_D.state_dict(),
}, args.reduced)
if (i+1) % 1000 == 0:
start = time.time()
batch_num = np.maximum(args.batch_size//4,2)
idx = i + epoch*len(train_loader)
imgs = utils.getImages(var.detach(), target.cuda(), output.detach(), batch_num, do_decode=True)
writer.add_image('data/imgs_gen', imgs, idx)
print("Img conversion time: ", time.time() - start)
writer.add_scalar('data/L2_loss_train', losses_L2.avg, i + epoch*len(train_loader))
writer.add_scalar('data/D_loss_train', losses_D.avg, i + epoch*len(train_loader))
writer.add_scalar('data/G_loss_train', losses_G.avg, i + epoch*len(train_loader))
def save_checkpoint(state, reduced, filename='model'):
if reduced:
torch.save(state, "models/" + filename + '_reduced_latest.pth.tar')
else:
torch.save(state, "models/" + filename + '_gan_multiclass_latest.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer_G, optimizer_D, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every n epochs"""
lr = 3e-5
if epoch >= 2:
lr = 1e-5
if epoch >= 5:
lr = 3e-6
for param_group in optimizer_G.param_groups:
param_group['lr'] = lr
for param_group in optimizer_D.param_groups:
param_group['lr'] = lr*10
def accuracy(output, target):
"""Computes the accuracy for image k"""
return acc
if __name__ == '__main__':
main()