This repository has been archived by the owner on Aug 22, 2024. It is now read-only.
forked from yl4579/AuxiliaryASR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeldataset.py
163 lines (128 loc) · 4.93 KB
/
meldataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#coding: utf-8
import os
import os.path as osp
import time
import random
import numpy as np
import random
import soundfile as sf
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
from torch.utils.data import DataLoader
from g2p_en import G2p
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
from text_utils import TextCleaner
np.random.seed(1)
random.seed(1)
DEFAULT_DICT_PATH = osp.join(osp.dirname(__file__), 'word_index_dict.txt')
SPECT_PARAMS = {
"n_fft": 2048,
"win_length": 1200,
"hop_length": 300
}
MEL_PARAMS = {
"n_mels": 80,
"n_fft": 2048,
"win_length": 1200,
"hop_length": 300
}
class MelDataset(torch.utils.data.Dataset):
def __init__(self,
data_list,
dict_path=DEFAULT_DICT_PATH,
sr=24000
):
spect_params = SPECT_PARAMS
mel_params = MEL_PARAMS
_data_list = [l[:-1].split('|') for l in data_list]
self.data_list = [data if len(data) == 3 else (*data, 0) for data in _data_list]
self.text_cleaner = TextCleaner(dict_path)
self.sr = sr
self.to_melspec = torchaudio.transforms.MelSpectrogram(**MEL_PARAMS)
self.mean, self.std = -4, 4
self.g2p = G2p()
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
data = self.data_list[idx]
wave, text_tensor, speaker_id = self._load_tensor(data)
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = self.to_melspec(wave_tensor)
if (text_tensor.size(0)+1) >= (mel_tensor.size(1) // 3):
mel_tensor = F.interpolate(
mel_tensor.unsqueeze(0), size=(text_tensor.size(0)+1)*3, align_corners=False,
mode='linear').squeeze(0)
acoustic_feature = (torch.log(1e-5 + mel_tensor) - self.mean)/self.std
length_feature = acoustic_feature.size(1)
acoustic_feature = acoustic_feature[:, :(length_feature - length_feature % 2)]
return wave_tensor, acoustic_feature, text_tensor, data[0]
def _load_tensor(self, data):
wave_path, text, speaker_id = data
speaker_id = int(speaker_id)
wave, sr = sf.read(wave_path)
# phonemize the text
ps = self.g2p(text.replace('-', ' '))
if "'" in ps:
ps.remove("'")
text = self.text_cleaner(ps)
blank_index = self.text_cleaner.word_index_dictionary[" "]
text.insert(0, blank_index) # add a blank at the beginning (silence)
text.append(blank_index) # add a blank at the end (silence)
text = torch.LongTensor(text)
return wave, text, speaker_id
class Collater(object):
"""
Args:
return_wave (bool): if true, will return the wave data along with spectrogram.
"""
def __init__(self, return_wave=False):
self.text_pad_index = 0
self.return_wave = return_wave
def __call__(self, batch):
batch_size = len(batch)
# sort by mel length
lengths = [b[1].shape[1] for b in batch]
batch_indexes = np.argsort(lengths)[::-1]
batch = [batch[bid] for bid in batch_indexes]
nmels = batch[0][1].size(0)
max_mel_length = max([b[1].shape[1] for b in batch])
max_text_length = max([b[2].shape[0] for b in batch])
mels = torch.zeros((batch_size, nmels, max_mel_length)).float()
texts = torch.zeros((batch_size, max_text_length)).long()
input_lengths = torch.zeros(batch_size).long()
output_lengths = torch.zeros(batch_size).long()
paths = ['' for _ in range(batch_size)]
for bid, (_, mel, text, path) in enumerate(batch):
mel_size = mel.size(1)
text_size = text.size(0)
mels[bid, :, :mel_size] = mel
texts[bid, :text_size] = text
input_lengths[bid] = text_size
output_lengths[bid] = mel_size
paths[bid] = path
assert(text_size < (mel_size//2))
if self.return_wave:
waves = [b[0] for b in batch]
return texts, input_lengths, mels, output_lengths, paths, waves
return texts, input_lengths, mels, output_lengths
def build_dataloader(path_list,
validation=False,
batch_size=4,
num_workers=1,
device='cpu',
collate_config={},
dataset_config={}):
dataset = MelDataset(path_list, **dataset_config)
collate_fn = Collater(**collate_config)
data_loader = DataLoader(dataset,
batch_size=batch_size,
shuffle=(not validation),
num_workers=num_workers,
drop_last=(not validation),
collate_fn=collate_fn,
pin_memory=(device != 'cpu'))
return data_loader