-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrestoration_metrics.py
377 lines (312 loc) · 20.9 KB
/
restoration_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# Script to calculate statistics for a selected region for use by Decision
# Theater Trends.Earth visualization.
#
# Takes a geojson as text as a command-line parameter, and returns values as
# JSON to standard out.
import sys
import json
import io
import ee
from common import get_fc_properties, get_coords, GEECall, get_pop, \
get_area_sdg, get_ecosystem_service_dominant, get_ecosystem_service_value
service_account = 'gef-ldmp-server@gef-ld-toolbox.iam.gserviceaccount.com'
credentials = ee.ServiceAccountCredentials(service_account, 'dt_key.json')
ee.Initialize(credentials)
aoi = ee.Geometry.MultiPolygon(get_coords(json.loads(sys.argv[1])))
out = {}
out['interventions'] = {'forest restoration': {},
'forest re-establishment': {},
'agricultural intensification': {},
'agricultural expansion': {}}
threads = []
co2_dollar_per_ton = 50
###############################################################################
# General statistics on polygon
# polygon area in hectares
aoi_area = aoi.area().divide(10000).getInfo()
out['area_hectares'] = aoi_area
# To keep processing times reasonable, use a 300 m scale for calculations if
# the area of the polygon is greater than 20,000 ha
if aoi_area < 5000:
scale = 20
else:
scale = 300
MAX_PIXELS= 1e9
# Need the population value, so need to wait on this thread
pop_thread = GEECall(get_pop, out, aoi)
pop_thread.join()
population = out['population']
threads.append(GEECall(get_area_sdg, out, aoi))
def get_forest_loss(out):
# Minimun tree cover to be considered a forest
tree_cover = 30
year_start = 2001
year_end = 2015
# Import Hansen global forest dataset
hansen = ee.Image('UMD/hansen/global_forest_change_2017_v1_5')
# define forest cover at the starting date
fc_loss = hansen.select('treecover2000').gte(tree_cover) \
.And(hansen.select('lossyear').gt(year_start - 2000)) \
.And(hansen.select('lossyear').lte(year_end - 2000))
# compute pixel areas in hectareas
areas = fc_loss.multiply(ee.Image.pixelArea().divide(10000))
forest_loss = get_fc_properties(areas.reduceRegions(collection=aoi, reducer=ee.Reducer.sum(), scale=scale),
normalize=False)
out['forest_loss'] = forest_loss['sum']
threads.append(GEECall(get_forest_loss, out))
###########################################################/
# Restoration projections
# 1) Agriculture: Estimate economic benefit of reducing yield gaps in degraded agricultural lands by 50 % and of improving SOC by 6% over 30 years
# 2) Forest restoration: Estimate the C and $ benefit of bringing forest AGB to maximum in the area (95 percentile) over 30 years
# 3) Forest re-establishment: Estimate the C and $ benefit of regenerating forests in areas where forest has been lost
# load productivity degradation layer, and focus only on degradation classes:
# decline and early signs of decline
lp7cl = ee.Image("users/geflanddegradation/global_ld_analysis/r20180821_lp7cl_globe_2001_2015_modis")
# load land cover: using 20 m land cover for 2016 for africa and 300 m 2015 for
# the rest of the world
landc_300 = ee.Image("users/geflanddegradation/global_ld_analysis/r20180821_lc_traj_globe_2001-2001_to_2015") \
.select("lc_tg").remap([1,2,3,4,5,6,7],[1,3,4,5,8,7,10]) \
.select(["remapped"],["b1"])
# 20 m land cover for africa from esa cci
landc_020 = ee.Image("users/marianogr80/ESACCI-LC-L4-LC10-Map-20m-P1Y-2016-v10")
# combine both datasets and display
landc = ee.ImageCollection([landc_300.int8(), landc_020.int8()]).mosaic()
# load yield gaps (source: http:#www.earthstat.org/data-download/)
yg_barle = ee.Image("users/geflanddegradation/yieldgap_earthstat/barley_yieldgap").unmask(0)
yg_groun = ee.Image("users/geflanddegradation/yieldgap_earthstat/groundnut_yieldgap").unmask(0)
yg_maize = ee.Image("users/geflanddegradation/yieldgap_earthstat/maize_yieldgap").unmask(0)
yg_rice0 = ee.Image("users/geflanddegradation/yieldgap_earthstat/rice_yieldgap").unmask(0)
yg_soybe = ee.Image("users/geflanddegradation/yieldgap_earthstat/soybean_yieldgap").unmask(0)
yg_sunfl = ee.Image("users/geflanddegradation/yieldgap_earthstat/sunflower_yieldgap").unmask(0)
yg_wheat = ee.Image("users/geflanddegradation/yieldgap_earthstat/wheat_yieldgap").unmask(0)
# potential yield (source: http:#www.earthstat.org/data-download/)
yp_barle = ee.Image("users/geflanddegradation/yieldgap_earthstat/barley_yieldpotential").unmask(0)
yp_groun = ee.Image("users/geflanddegradation/yieldgap_earthstat/groundnut_yieldpotential").unmask(0)
yp_maize = ee.Image("users/geflanddegradation/yieldgap_earthstat/maize_yieldpotential").unmask(0)
yp_rice0 = ee.Image("users/geflanddegradation/yieldgap_earthstat/rice_yieldpotential").unmask(0)
yp_soybe = ee.Image("users/geflanddegradation/yieldgap_earthstat/soybean_yieldpotential").unmask(0)
yp_sunfl = ee.Image("users/geflanddegradation/yieldgap_earthstat/sunflower_yieldpotential").unmask(0)
yp_wheat = ee.Image("users/geflanddegradation/yieldgap_earthstat/wheat_yieldpotential").unmask(0)
# harvested fraction (source: http:#www.earthstat.org/data-download/)
hf_barle = ee.Image("users/geflanddegradation/yieldgap_earthstat/barley_HarvestedAreaFraction").unmask(0)
hf_groun = ee.Image("users/geflanddegradation/yieldgap_earthstat/groundnut_HarvestedAreaFraction").unmask(0)
hf_maize = ee.Image("users/geflanddegradation/yieldgap_earthstat/maize_HarvestedAreaFraction").unmask(0)
hf_rice0 = ee.Image("users/geflanddegradation/yieldgap_earthstat/rice_HarvestedAreaFraction").unmask(0)
hf_soybe = ee.Image("users/geflanddegradation/yieldgap_earthstat/soybean_HarvestedAreaFraction").unmask(0)
hf_sunfl = ee.Image("users/geflanddegradation/yieldgap_earthstat/sunflower_HarvestedAreaFraction").unmask(0)
hf_wheat = ee.Image("users/geflanddegradation/yieldgap_earthstat/wheat_HarvestedAreaFraction").unmask(0)
hf_total = hf_barle.add(hf_groun.add(hf_maize.add(hf_rice0.add(hf_soybe.add(hf_sunfl.add(hf_wheat))))))
# potential vegetation cover from Hengl 2018 https:#dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/QQHCIK
pot_vegeta = ee.Image("users/geflanddegradation/toolbox_datasets/pnv_biometype_biome00k_c_1km_s00cm_20002017_v01")
# define areas of potential forest vegetation cover
pot_forest = pot_vegeta.remap([1, 2, 3, 4, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 22, 27, 28, 30, 31, 32],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0])
# Number Original_biome_classification
# 1 tropical evergreen broadleaf forest
# 2 tropical semi-evergreen broadleaf forest
# 3 tropical deciduous broadleaf forest and woodland
# 4 warm-temperate evergreen broadleaf and mixed forest
# 7 wet sclerophyll forest
# 8 cool evergreen needleleaf forest
# 9 cool mixed forest
# 13 temperate deciduous broadleaf forest
# 14 cold deciduous forest
# 15 cold evergreen needleleaf forest
# 16 temperate sclerophyll woodland and shrubland
# 17 temperate evergreen needleleaf open woodland
# 18 tropical savanna
# 19 temperate deciduous broadleaf savanna
# 20 tropical xerophytic shrubland
# 22 tropical grassland
# 27 desert
# 28 graminoid and forb tundra
# 30 erect dwarf-shrub tundra
# 31 low and high shrub tundra
# 32 prostrate dwarf-shrub tundra
# key biodiversity area
kbas = ee.FeatureCollection("users/geflanddegradation/toolbox_datasets/KBAsGlobal_2018_01")
# convert to raster
kba_r = kbas.reduceToImage(properties=['OBJECTID'], reducer=ee.Reducer.first()).gte(0)
# protected areas
pas = ee.FeatureCollection("WCMC/WDPA/current/polygons")
# convert to raster
pas_r = pas.reduceToImage(properties=['METADATAID'], reducer=ee.Reducer.first()).gte(0)
#Import SOC (ton/Ha)
soc = ee.Image("users/geflanddegradation/toolbox_datasets/soc_sgrid_30cm_unccd_20180111")
###############################################################################
# define areas for each of the 3 potential restoration activities
###############################################################################
def get_ag_intens_cba(out):
# for agriculture restoration: ag land cover, prod degradation, no kbas, no
# pas
ag_intens_r = lp7cl.remap([-32768, 1, 2, 3, 4, 5, 6, 7],
[ 0, 1, 1, 0, 0, 0, 0, 0]) \
.eq(1).And(landc.eq(4)).where(kba_r.eq(1), 0).where(pas_r.eq(1), 0)
ag_intens_area = ag_intens_r.multiply(ee.Image.pixelArea().divide(10000)) \
.reduceRegion(reducer=ee.Reducer.sum(), geometry=aoi, scale=scale,
maxPixels=MAX_PIXELS, bestEffort=True) \
.get("remapped")
out['interventions']['agricultural intensification']['area_hectares'] = ag_intens_area.getInfo()
out['interventions']['agricultural intensification']['area_habitat_hectares'] = 0
def f_crop_inc_intensification(ygap, ypot, hfra):
crop_gap = (ypot.multiply(0.75).subtract(ypot.subtract(ygap))).divide(10000).updateMask(ag_intens_r)
crop_area = crop_gap.gt(0).multiply(ee.Image.pixelArea()).multiply(hfra.divide(hf_total)) \
.reduceRegion(reducer=ee.Reducer.sum(), geometry=aoi, scale=scale, maxPixels=MAX_PIXELS, bestEffort=True).get("b1")
crop_mean = crop_gap.where(crop_gap.lt(0),0) \
.reduceRegion(reducer=ee.Reducer.mean(), geometry=aoi, scale=scale, maxPixels=MAX_PIXELS, bestEffort=True).get("b1")
if crop_mean.getInfo() < 0:
crop_mean = ee.Number(0)
return ee.Number(crop_area).multiply(crop_mean)
# make function to work with tons, and mulitply by price at the end so I can get tons and money from same function ( remove margin from eq, leave reduction in yield gap)
barle_ton = f_crop_inc_intensification(yg_barle, yp_barle, hf_barle)
groun_ton = f_crop_inc_intensification(yg_groun, yp_groun, hf_groun)
maize_ton = f_crop_inc_intensification(yg_maize, yp_maize, hf_maize)
rice0_ton = f_crop_inc_intensification(yg_rice0, yp_rice0, hf_rice0)
soybe_ton = f_crop_inc_intensification(yg_soybe, yp_soybe, hf_soybe)
sunfl_ton = f_crop_inc_intensification(yg_sunfl, yp_sunfl, hf_sunfl)
wheat_ton = f_crop_inc_intensification(yg_wheat, yp_wheat, hf_wheat)
# prices from online sources in tons/ha and profit margins of 15% (https:#www.farmafrica.org/downloads/resources/MATFGrantholders-Report.5.pdf)
barle_inc = barle_ton.multiply(130) # 130 $/ton
groun_inc = groun_ton.multiply(1200)# 1200 $/ton
maize_inc = maize_ton.multiply(180) # 180 $/ton
rice0_inc = rice0_ton.multiply(380) # 380 $/ton
soybe_inc = soybe_ton.multiply(300) # 300 $/ton
sunfl_inc = sunfl_ton.multiply(780) # 780 $/ton
wheat_inc = wheat_ton.multiply(200) # 200 $/ton
ag_intens_crop_value = barle_inc.add(groun_inc.add(maize_inc.add(rice0_inc.add(soybe_inc.add(sunfl_inc.add(wheat_inc))))))
soc_ag_rest = ee.Number(soc.updateMask(ag_intens_r) \
.reduceRegion(reducer=ee.Reducer.mean(), geometry=aoi, scale=scale, maxPixels=MAX_PIXELS, bestEffort=True).get("b1"))
if soc_ag_rest.getInfo() < 0:
soc_ag_rest = ee.Number(0)
ag_intens_co2 = soc_ag_rest.multiply(ag_intens_area).multiply(0.06*3.67/30) # co2 ag intensification (ton/year)
ag_intens_co2_value = ag_intens_co2.multiply(co2_dollar_per_ton) # co2 ag intensification (usd/year)
ag_intens_value = ag_intens_crop_value.add(ag_intens_co2_value)
ag_intens_cost = ag_intens_crop_value.divide(1.15)
ag_intens_benef = (ag_intens_value.subtract(ag_intens_cost)).divide(population)
# rate of soc increase https:#www.dpi.nsw.gov.au/__data/assets/pdf_file/0014/321422/A-farmers-guide-to-increasing-Soil-Organic-Carbon-under-pastures.pdf
out['interventions']['agricultural intensification']['co2_tons_per_yr'] = ag_intens_co2.getInfo()
out['interventions']['agricultural intensification']['dollars_benefits_total'] = ag_intens_value.getInfo()
out['interventions']['agricultural intensification']['dollars_cost_total'] = ag_intens_cost.getInfo()
out['interventions']['agricultural intensification']['dollars_net_per_psn_per_yr'] = ag_intens_benef.getInfo()
threads.append(GEECall(get_ag_intens_cba, out))
def get_ag_expan_cba(out):
# agriculture expansion: convert shrub, grass and sparce vegetation areas
# to ag, no kbas, no pas
ag_expan_r = landc.remap([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0]) \
.eq(1).where(kba_r.eq(1), 0).where(pas_r.eq(1), 0)
ag_expan_area = ag_expan_r.multiply(ee.Image.pixelArea().divide(10000)) \
.reduceRegion(reducer=ee.Reducer.sum(), geometry=aoi, scale=scale,
maxPixels=MAX_PIXELS, bestEffort=True) \
.get("remapped")
out['interventions']['agricultural expansion']['area_hectares'] = ag_expan_area.getInfo()
out['interventions']['agricultural expansion']['area_habitat_hectares'] = 0
def f_crop_inc_expansion(ypot, hfra):
crop_gap = ypot.multiply(0.75).divide(10000).updateMask(ag_expan_r)
crop_area = crop_gap.gt(0).multiply(ee.Image.pixelArea()).multiply(hfra.divide(hf_total)) \
.reduceRegion(reducer=ee.Reducer.sum(), geometry=aoi, scale=scale, maxPixels=MAX_PIXELS, bestEffort=True).get("b1")
crop_mean = crop_gap.where(crop_gap.lt(0), 0) \
.reduceRegion(reducer=ee.Reducer.mean(), geometry=aoi, scale=scale, maxPixels=MAX_PIXELS, bestEffort=True).get("b1")
if crop_mean.getInfo() < 0:
crop_mean = ee.Number(0)
return ee.Number(crop_area).multiply(crop_mean)
# make function to work with tons, and mulitply by price at the end so I can
# get tons and money from same function ( remove margin from eq, leave
# reduction in yield gap)
barle_ton = f_crop_inc_expansion(yp_barle, hf_barle)
groun_ton = f_crop_inc_expansion(yp_groun, hf_groun)
maize_ton = f_crop_inc_expansion(yp_maize, hf_maize)
rice0_ton = f_crop_inc_expansion(yp_rice0, hf_rice0)
soybe_ton = f_crop_inc_expansion(yp_soybe, hf_soybe)
sunfl_ton = f_crop_inc_expansion(yp_sunfl, hf_sunfl)
wheat_ton = f_crop_inc_expansion(yp_wheat, hf_wheat)
# prices from online sources in tons/ha and profit margins of 15% (https:#www.farmafrica.org/downloads/resources/MATFGrantholders-Report.5.pdf)
barle_inc = barle_ton.multiply(130) # 130 $/ton
groun_inc = groun_ton.multiply(1200)# 1200 $/ton
maize_inc = maize_ton.multiply(180) # 180 $/ton
rice0_inc = rice0_ton.multiply(380) # 380 $/ton
soybe_inc = soybe_ton.multiply(300) # 300 $/ton
sunfl_inc = sunfl_ton.multiply(780) # 780 $/ton
wheat_inc = wheat_ton.multiply(200) # 200 $/ton
ag_expan_crop_value = barle_inc.add(groun_inc.add(maize_inc.add(rice0_inc.add(soybe_inc.add(sunfl_inc.add(wheat_inc))))))
soc_ag_exp = ee.Number(soc.updateMask(ag_expan_r) \
.reduceRegion(reducer=ee.Reducer.mean(), geometry=aoi, scale=scale, maxPixels=MAX_PIXELS, bestEffort=True).get("b1"))
if soc_ag_exp.getInfo() < 0:
soc_ag_exp = ee.Number(0)
# mean rate of soc loss from conversion of grassland to ag from trends.earth
# 40% over 20 years
ag_expan_co2 = soc_ag_exp.multiply(ag_expan_area).multiply(-0.4/20) # co2 ag expansion (ton/year)
ag_expan_co2_value = ag_expan_co2.multiply(co2_dollar_per_ton) # co2 ag expansion (usd/year)
ag_expan_value = ag_expan_crop_value.add(ag_expan_co2_value)
ag_expan_cost = ag_expan_crop_value.divide(1.15)
out['interventions']['agricultural expansion']['co2_tons_per_yr'] = ag_expan_co2.getInfo()
out['interventions']['agricultural expansion']['dollars_net_per_psn_per_yr'] = ag_expan_value.subtract(ag_expan_cost).divide(population).getInfo()
out['interventions']['agricultural expansion']['dollars_cost_total'] = ag_expan_cost.getInfo()
out['interventions']['agricultural expansion']['dollars_benefits_total'] = ag_expan_value.getInfo()
threads.append(GEECall(get_ag_expan_cba, out))
###############################################################################
# forest restoration/re-establishment cost calculations
###############################################################################
#Import biomass dataset: WHRC is Megagrams of Aboveground Live Woody Biomass per Hectare (ton/Ha)
agb = ee.Image("users/geflanddegradation/toolbox_datasets/forest_agb_30m_woodhole")
# calculate average above and below ground biomass Mokany et al. 2006 (convert to co2 eq totalcarbon * 3.67)
bgb = agb.expression('0.489 * BIO**(0.89)', {'BIO': agb})
# Calculate Total biomass (t/ha) then convert to carbon equilavent (*0.5) to get Total Carbon (t ha-1) = (AGB+BGB)*0.5
tco2 = agb.expression('(bgb + abg ) * 0.5 * 3.67 ', {'bgb': bgb,'abg': agb})
# define potential forest C stock (in co2 eq) as the 75th percentile of current forest stands in the area (added buffer in case there is no forest)
tco2_85pc = ee.Number(tco2.reduceRegion(reducer=ee.Reducer.percentile([85]),
geometry=aoi.buffer(10000),
scale=scale, maxPixels=MAX_PIXELS,
bestEffort=True).get("constant"))
if tco2_85pc.getInfo() < 0:
tco2_85pc = ee.Number(0)
def get_for_restor_cba(out):
# for forest restoration: current degraded forests (regardless of kbas or
# pas)
for_restor_r = lp7cl.remap([-32768, 1, 2, 3, 4, 5, 6, 7], [0, 1, 1, 0, 0, 0, 0, 0]).eq(1).And(landc.eq(1))
for_restor_area = for_restor_r.multiply(ee.Image.pixelArea().divide(10000)) \
.reduceRegion(reducer=ee.Reducer.sum(), geometry=aoi, scale=scale, maxPixels=MAX_PIXELS, bestEffort=True).get("remapped")
out['interventions']['forest restoration']['area_hectares'] = for_restor_area.getInfo()
out['interventions']['forest restoration']['area_habitat_hectares'] = for_restor_area.getInfo()
for_restor_co2_dif = tco2.subtract(ee.Number(tco2_85pc)).multiply(-1)
for_restor_co2_dif_mean = ee.Number(for_restor_co2_dif.where(for_restor_co2_dif.lt(0), 0) \
.reduceRegion(reducer=ee.Reducer.mean(), geometry=aoi, scale=scale, maxPixels=MAX_PIXELS, bestEffort=True).get("constant"))
if for_restor_co2_dif_mean.getInfo() < 0:
for_restor_co2_dif_mean = ee.Number(0)
# Note: price of CO2 in USD/ton 15 source: http:#calcarbondash.org/
for_restor_co2 = for_restor_co2_dif_mean.multiply(ee.Number(for_restor_area).divide(20)) # co2 forest restoration (ton/year)
for_restor_value = for_restor_co2.multiply(co2_dollar_per_ton) # co2 forest restoration (usd/year)
for_restor_cost = ee.Number(for_restor_area).multiply(100)
for_restor_net_benef = (for_restor_value.subtract(for_restor_cost)).divide(population)
# forest restoration
out['interventions']['forest restoration']['co2_tons_per_yr'] = for_restor_co2.getInfo()
out['interventions']['forest restoration']['dollars_net_per_psn_per_yr'] = for_restor_net_benef.getInfo()
out['interventions']['forest restoration']['dollars_cost_total'] = for_restor_cost.getInfo()
out['interventions']['forest restoration']['dollars_benefits_total'] = for_restor_value.getInfo()
threads.append(GEECall(get_for_restor_cba, out))
def get_for_reest_cba(out):
# for forest re-establishment: shrub, grass, sparce or other land cover in
# areas of potential forest (regardless of kbas or pas)
for_reest_r = pot_forest.eq(1).And(landc.remap([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0])).eq(1)
for_reest_area = for_reest_r.multiply(ee.Image.pixelArea().divide(10000)) \
.reduceRegion(reducer=ee.Reducer.sum(), geometry=aoi, scale=scale, maxPixels=MAX_PIXELS, bestEffort=True).get("remapped")
out['interventions']['forest re-establishment']['area_hectares'] = for_reest_area.getInfo()
#TODO: Fix so habitat can be negative? Due to grassland loss?
out['interventions']['forest re-establishment']['area_habitat_hectares'] = for_reest_area.getInfo()
# Cost of re-establishment over 30 years 900$/ha for planting 400$/ha
# natural regeneration over a 30 yr period
# Cost of forest regeneration in forest areas 1/2 of in ag land 200 $/ha over a 30 yr period
for_reest_co2 = tco2_85pc.multiply(ee.Number(for_reest_area).divide(20)) # co2 forest re-establ (ton/year)
for_reest_value = for_reest_co2.multiply(co2_dollar_per_ton) # co2 forest re-establ (usd/year)
for_reest_cost = ee.Number(for_reest_area).multiply(400)
for_reest_benef = (for_reest_value.subtract(for_reest_cost)).divide(population)
out['interventions']['forest re-establishment']['co2_tons_per_yr'] = for_reest_co2.getInfo()
out['interventions']['forest re-establishment']['dollars_net_per_psn_per_yr'] = for_reest_benef.getInfo()
out['interventions']['forest re-establishment']['dollars_cost_total'] = for_reest_cost.getInfo()
out['interventions']['forest re-establishment']['dollars_benefits_total'] = for_reest_value.getInfo()
threads.append(GEECall(get_for_reest_cba, out))
threads.append(GEECall(get_ecosystem_service_dominant, out, aoi))
threads.append(GEECall(get_ecosystem_service_value, out, aoi))
for t in threads:
t.join()
sys.stdout.write(json.dumps(out, ensure_ascii=False, indent=4, sort_keys=True))