-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregion_metrics_emissions.py
129 lines (103 loc) · 5.98 KB
/
region_metrics_emissions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Script to calculate statistics for a selected region for use by Decision
# Theater Trends.Earth visualization.
#
# Takes a geojson as text as a command-line parameter, and returns values as
# JSON to standard out.
import sys
import json
import io
import ee
from common import get_fc_properties, get_coords, GEECall
service_account = 'gef-ldmp-server@gef-ld-toolbox.iam.gserviceaccount.com'
credentials = ee.ServiceAccountCredentials(service_account, 'dt_key.json')
ee.Initialize(credentials)
aoi = ee.Geometry.MultiPolygon(get_coords(json.loads(sys.argv[1])))
# polygon area in hectares
area_hectares = aoi.area().divide(10000).getInfo()
out = {}
threads = []
###############################################################################
# Carbon emissions calculations
# Minimun tree cover to be considered a forest
tree_cover = 30
year_start = 2001
year_end = 2015
##############################################/
# DATASETS
# Import Hansen global forest dataset
hansen = ee.Image('UMD/hansen/global_forest_change_2016_v1_4')
#Import biomass dataset: WHRC is Megagrams of Aboveground Live Woody Biomass per Hectare (Mg/Ha)
agb = ee.Image("users/geflanddegradation/toolbox_datasets/forest_agb_30m_woodhole")
# reclass to 1.broadleaf, 2.conifer, 3.mixed, 4.savanna
f_type = ee.Image("users/geflanddegradation/toolbox_datasets/esa_forest_expanded_2015") \
.remap([50, 60, 61, 62, 70, 71, 72, 80, 81, 82, 90, 100, 110],
[ 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3])
# IPCC climate zones reclassified as from http:#eusoils.jrc.ec.europa.eu/projects/RenewableEnergy/
# 0-No data, 1-Warm Temperate Moist, 2-Warm Temperate Dry, 3-Cool Temperate Moist, 4-Cool Temperate Dry, 5-Polar Moist,
# 6-Polar Dry, 7-Boreal Moist, 8-Boreal Dry, 9-Tropical Montane, 10-Tropical Wet, 11-Tropical Moist, 12-Tropical Dry) to
# 0: no data, 1:trop/sub moist, 2: trop/sub dry, 3: temperate)
climate = ee.Image("users/geflanddegradation/toolbox_datasets/ipcc_climate_zones") \
.remap([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
[0, 1, 2, 3, 3, 3, 3, 3, 3, 1, 1, 1, 2])
# Root to shoot ratio methods
# calculate average above and below ground biomass
# BGB (t ha-1) Citation Mokany et al. 2006 = (0.489)*(AGB)^(0.89)
# Mokany used a linear regression of root biomass to shoot biomass for
# forest and woodland and found that BGB(y) is ~ 0.489 of AGB(x).
# However, applying a power (0.89) to the shoot data resulted in an improved model
# for relating root biomass (y) to shoot biomass (x):
# y = 0:489 x0:890
bgb = agb.expression('0.489 * BIO**(0.89)', {'BIO': agb})
rs_ratio = agb.divide(bgb)
# Calculate Total biomass (t/ha) then convert to carbon equilavent (*0.5) to get Total Carbon (t ha-1) = (AGB+BGB)*0.5
tbcarbon = agb.expression('(bgb + abg ) * 0.5 ', {'bgb': bgb,'abg': agb})
# convert Total Carbon to Total Carbon dioxide tCO2/ha
# One ton of carbon equals 44/12 = 11/3 = 3.67 tons of carbon dioxide
teco2 = agb.expression('totalcarbon * 3.67 ', {'totalcarbon': tbcarbon})
##############################################/
# define forest cover at the starting date
fc_str = ee.Image(1).updateMask(hansen.select('treecover2000').gte(tree_cover)) \
.updateMask(hansen.select('lossyear').where(hansen.select('lossyear').eq(0),9999).gte(year_start - 2000 + 1)) \
.rename(['forest_cover_{}'.format(year_start)])
# using forest cover at the start year, identify losses per year
fl_stack = ee.Image().select()
for k in range(year_start - 2000 + 1, year_end - 2000 + 1):
fl = fc_str.updateMask(hansen.select('lossyear').eq(k)).rename(['forest_loss_hectares_{}'.format(k + 2000)])
fl_stack = fl_stack.addBands(fl)
# use the losses per year to compute forest extent per year
fc_stack = fc_str
for k in range(year_start - 2000 + 1, year_end - 2000 + 1):
fc = fc_stack.select('forest_cover_{}'.format(k + 2000 - 1)).updateMask(fl_stack.select('forest_loss_hectares_{}'.format(k + 2000)).unmask(0).neq(1)).rename(['forest_cover_{}'.format(k + 2000)])
fc_stack = fc_stack.addBands(fc)
# use annual forest extent to estimate annual forest biomass in tons C/ha
cb_stack = ee.Image().select()
for k in range(year_start - 2000, year_end - 2000 + 1):
cb = tbcarbon.updateMask(fc_stack.select('forest_cover_{}'.format(k + 2000)).eq(1)).rename(['carbon_biomass_tons_per_ha_{}'.format(k + 2000)])
cb_stack = cb_stack.addBands(cb)
# use annual forest loss to estimate annual emissions from deforestation in tons CO2/ha
ce_stack = ee.Image().select()
for k in range(year_start - 2000 + 1, year_end - 2000 + 1):
ce = teco2.updateMask(fl_stack.select('forest_loss_hectares_{}'.format(k + 2000)).eq(1)).rename(['carbon_emissions_tons_co2e_{}'.format(k + 2000)])
ce_stack = ce_stack.addBands(ce)
# combine all the datasets into a multilayer stack
output = fc_stack.addBands(fl_stack).addBands(cb_stack).addBands(ce_stack)
# compute pixel areas in hectareas
areas = output.multiply(ee.Image.pixelArea().divide(10000))
def get_carbon_emissions_tons_co2e(out):
# Get annual emissions and sum them across all years
emissions = get_fc_properties(areas.reduceRegions(collection=aoi, reducer=ee.Reducer.sum(), scale=30),
normalize=False, filter_regex='carbon_emissions_tons_co2e_[0-9]*')
out['carbon_emissions_tons_co2e'] = sum(emissions.values())
threads.append(GEECall(get_carbon_emissions_tons_co2e, out))
def get_forest_areas(out):
forest_areas = get_fc_properties(areas.reduceRegions(collection=aoi, reducer=ee.Reducer.sum(), scale=30),
normalize=False, filter_regex='forest_cover_[0-9]*')
out['forest_area_hectares_2001'] = forest_areas['forest_cover_2001']
out['forest_area_hectares_2015'] = forest_areas['forest_cover_2015']
out['forest_area_percent_2001'] = forest_areas['forest_cover_2001'] / area_hectares * 100
out['forest_area_percents_2015'] = forest_areas['forest_cover_2015'] / area_hectares * 100
threads.append(GEECall(get_forest_areas, out))
for t in threads:
t.join()
# Return all output as json on stdout
sys.stdout.write(json.dumps(out, ensure_ascii=False, indent=4, sort_keys=True))