-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDQNAgent.py
196 lines (166 loc) · 8.09 KB
/
DQNAgent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
from collections import deque
import copy
import pickle
from maps.SumoEnv import SumoEnv
import time
class DqnAgent:
def __init__(self, observation_space_n):
"""
Initialize the DQN Agent.
Parameters:
observation_space_n (int): The size of the observation space, representing the input to the neural network.
"""
self.observation_space_n = observation_space_n
# Set the computing device (MPS for Mac GPUs or CPU as fallback)
device = "mps" if torch.backends.mps.is_available() else "cpu"
print(f"Using device: {device}")
# Set random seed
random_seed = 33
torch.manual_seed(random_seed)
np.random.seed(random_seed)
random.seed(random_seed)
# Define the neural network
self.policy_network = self._initialize_network()
self.target_network = copy.deepcopy(self.policy_network)
# Environment and replay buffer setup
self.highway_flow = 5000
self.ramp_flow = 2000
self.environment = SumoEnv(gui=False, flow_on_HW=self.highway_flow, flow_on_Ramp=self.ramp_flow)
self.state_buffer = deque(maxlen=3)
for _ in range(3):
state_matrix = [[0 for _ in range(251)] for _ in range(4)]
self.state_buffer.appendleft(state_matrix)
# Traffic flow data for simulation
self.traffic_flow_data = [(t * 60, hw, ramp) for t, hw, ramp in [
(0, 1000, 500), (10, 2000, 1300), (20, 3200, 1800),
(30, 2500, 1500), (40, 1500, 1000), (50, 1000, 700), (60, 800, 500)
]]
# Simulation and training parameters
self.simulation_step_length = 60
self.mu, self.omega, self.tau = 0.1, -0.4, 0.05 # mu: speed on HW, omega: waiting vehicles at TL, tau: speed on ramp
self.epochs, self.batch_size = 40, 32
self.max_steps = 3600 / self.simulation_step_length
self.learning_rate, self.gamma = 5e-5, 0.99
self.eps_start, self.eps_min = 0.8, 0.05
self.eps_decay_factor, self.sync_frequency = 0.05, 5
self.eps_decay_exponential = True
# Optimizer, loss function, and experience replay
self.optimizer = optim.Adam(self.policy_network.parameters(), lr=self.learning_rate)
self.loss_function = nn.MSELoss()
self.replay_buffer_size = 50000
self.replay_buffer = deque(maxlen=self.replay_buffer_size)
def _initialize_network(self):
"""Create the neural network model."""
input_size, layer1, layer2, layer3, layer4 = self.observation_space_n, 128, 64, 32, 8
model = nn.Sequential(
nn.Linear(input_size, layer1), nn.ReLU(),
nn.Linear(layer1, layer2), nn.ReLU(),
nn.Linear(layer2, layer3), nn.ReLU(),
nn.Linear(layer3, layer4), nn.ReLU(),
nn.Linear(layer4, 1), nn.Sigmoid() # Output single continuous action value in [0, 1]
)
return model
def observe_state(self):
"""Retrieve the current state from the environment."""
state_matrix = self.environment.getStateMatrixV2()
self.state_buffer.appendleft(state_matrix)
flat_state_array = np.concatenate(self.state_buffer).flatten()
return torch.from_numpy(flat_state_array).float()
def calculate_reward(self):
"""Calculate reward based on environment metrics."""
return (self.mu * self.environment.getSpeedHW() +
self.omega * self.environment.getNumberVehicleWaitingTL() +
self.tau * self.environment.getSpeedRamp())
def perform_step(self, action):
"""Execute a simulation step with the given action."""
for _ in range(self.simulation_step_length):
hw_flow, ramp_flow = self._interpolate_traffic_flow(self.environment.getCurrentStep(), self.traffic_flow_data)
self.environment.setFlowOnHW(hw_flow)
self.environment.setFlowOnRamp(ramp_flow)
# print(f"Light proportions: {action}")
self.environment.doSimulationStep(action)
# print(f"Traffic light status: {self.environment.getTrafficLightState()}")
def reset_environment(self):
"""Reset the environment and state buffer."""
for _ in range(3):
state_matrix = [[0 for _ in range(251)] for _ in range(4)]
self.state_buffer.appendleft(state_matrix)
self.environment.reset()
def train_agent(self):
"""Train the DQN agent using the defined environment and parameters."""
total_losses, total_rewards, total_steps = [], [], 0
for epoch in range(self.epochs):
print("Epoch:", epoch)
epsilon = self._update_epsilon(epoch)
self.reset_environment()
state = self.observe_state()
is_done = False
while not is_done:
total_steps += 1
# Select action
q_value = self.policy_network(state)
action = q_value.item() if random.random() >= epsilon else random.uniform(0, 1)
self.perform_step(action)
next_state = self.observe_state()
reward = self.calculate_reward()
total_rewards.append(reward)
# Store experience
experience = (state, action, reward, next_state, False)
self.replay_buffer.append(experience)
state = next_state
# Train if buffer has enough samples
if len(self.replay_buffer) > self.batch_size:
minibatch = random.sample(self.replay_buffer, self.batch_size)
self._train_step(minibatch)
if total_steps % self.sync_frequency == 0:
self.target_network.load_state_dict(self.policy_network.state_dict())
if total_steps >= self.max_steps:
is_done = True
return self.policy_network, np.array(total_losses), np.array(total_rewards)
def _train_step(self, minibatch):
"""Train the model on a mini-batch of experiences."""
state_batch = torch.cat([s1.unsqueeze(0) for (s1, a, r, s2, d) in minibatch])
action_batch = torch.Tensor([a for (s1, a, r, s2, d) in minibatch])
reward_batch = torch.Tensor([r for (s1, a, r, s2, d) in minibatch])
next_state_batch = torch.cat([s2.unsqueeze(0) for (s1, a, r, s2, d) in minibatch])
done_batch = torch.Tensor([d for (s1, a, r, s2, d) in minibatch])
Q1 = self.policy_network(state_batch).squeeze()
with torch.no_grad():
Q2 = self.target_network(next_state_batch).squeeze()
target = reward_batch + self.gamma * ((1 - done_batch) * Q2)
loss = self.loss_function(Q1, target.detach())
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def _update_epsilon(self, current_epoch):
"""Update epsilon value for exploration-exploitation balance."""
if self.eps_decay_exponential:
return self.eps_min + (self.eps_start - self.eps_min) * np.exp(-self.eps_decay_factor * current_epoch)
else:
decay_rate = (self.eps_start - self.eps_min) / self.epochs
return max(self.eps_min, self.eps_start - decay_rate * current_epoch)
def _interpolate_traffic_flow(self, step, data_points):
"""Interpolate traffic flow values based on the current step."""
times, hw_flows, ramp_flows = zip(*data_points)
hw_flow = np.interp(step, times, hw_flows)
ramp_flow = np.interp(step, times, ramp_flows)
return int(hw_flow), int(ramp_flow)
# Main script
if __name__ == "__main__":
agent = DqnAgent(observation_space_n=3012)
trained_model, losses, rewards = agent.train_agent()
# Save training results and model
results = {
"model": trained_model,
"losses": losses,
"rewards": rewards
}
with open('training_results.pkl', 'wb') as file:
pickle.dump(results, file)
print("Training results saved successfully.")
torch.save(trained_model, 'Models/DQNModel.pth')