-
Notifications
You must be signed in to change notification settings - Fork 2
/
run_srl.py
306 lines (266 loc) · 13.1 KB
/
run_srl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
'''
This function builds an SRL system based on Transformers.
'''
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import f1_score, precision_score, recall_score, classification_report
from torch import nn
from transformers import (
AutoConfig,
AutoTokenizer,
AutoModelForTokenClassification,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from srl_utils import SRLDataset, get_labels
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are fine-tuning from.
"""
model_name_or_path: str = field(metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"})
config_name: Optional[str] = field(default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"})
tokenizer_name: Optional[str] = field(default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
cache_dir: Optional[str] = field(default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"})
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
train_data_path: str = field(metadata={"help": "Path to training data. If it is a directory, will read all relevant files in directory. If it is a file, read file."})
dev_data_path: str = field(metadata={"help": "Path to development data. If it is a directory, will read all relevant files in directory. If it is a file, read file."})
test_data_path: str = field(metadata={"help": "Path to test data. If it is a directory, will read all relevant files in directory. If it is a file, read file."})
labels: Optional[str] = field(default="", metadata={"help": "Path to a file containing all labels. If not specified, default SRL labels are used."})
max_seq_length: int = field(default=128, metadata={"help": "The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded."})
token_type: str = field(default="predicate", metadata={"help": "Method of setting up token_type_ids."})
overwrite_cache: bool = field(default=False, metadata={"help": "Overwrite the cached training and evaluation sets"})
embedding_dropout: float = field(default=0.1, metadata={"help": "Dropout probability for BERT embeddings during training."})
hidden_size: int = field(default=768 , metadata={"help": "Size of input to tag projection layer."})
model_metadata: dict = field(default_factory=dict, metadata={"help": "Any extra metadata, in the form of a string of a dict."})
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If passed only one argument to the script and it's the path to a json file
# then parse it to get arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
logging.basicConfig(
format = "%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt = "%m%d%Y %H:%M:%S",
level = logging.INFO if training_args.local_rank in [-1,0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpus: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set random seed
set_seed(training_args.seed)
# Prepare data task
labels = get_labels(data_args.labels)
label_map: Dict[int, str] = {i: label for i, label in enumerate(labels)}
num_labels = len(labels)
# Load pretrained model and tokenizer
# Distributed training: the .from_pretrained methods guarantee that only one local process can concurrently download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
id2label=label_map,
label2id={label: i for i, label in enumerate(labels)},
cache_dir=model_args.cache_dir,
hidden_dropout_prob=data_args.embedding_dropout,
hidden_size=data_args.hidden_size,
)
model = AutoModelForTokenClassification.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast,
)
# print("config type: {}; tokenizer type: {}; model type: {}".format(type(config), type(tokenizer), type(model)))
print('--MODEL METADATA-- ', data_args.model_metadata)
# Get datasets
train_dataset = (
SRLDataset(
data_path=data_args.train_data_path,
tokenizer=tokenizer,
model_type=config.model_type,
labels_file=data_args.labels.rsplit('/', 1)[-1],
labels=labels,
predict_input=False,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
metadata=data_args.model_metadata,
)
if training_args.do_train
else None
)
eval_dataset = (
SRLDataset(
data_path=data_args.dev_data_path,
tokenizer=tokenizer,
model_type=config.model_type,
labels_file=data_args.labels.rsplit('/', 1)[-1],
labels=labels,
predict_input=False,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
metadata=data_args.model_metadata,
)
if training_args.do_eval
else None
)
def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]:
"""
Align predictions and true tags to mask out tags to be ignored.
Inputs:
predictions: `np.ndarray`
Input of size (batch_size, seq_len, num labels) representing output of model.
label_ids: `np.ndarray`
Input of size (batch_size, seq_len) representing true tags.
Outputs:
preds_list: `List[int]`
List of predicted label tags.
out_label_list: `List[int]`
List of true label tags.
"""
preds = np.argmax(predictions, axis=2)
batch_size, seq_len = preds.shape
out_label_list = [[] for _ in range(batch_size)]
preds_list = [[] for _ in range(batch_size)]
for i in range(batch_size):
for j in range(seq_len):
# If this label is not masked over, lookup the corresponding tag and append it to outputs.
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]])
preds_list[i].append(label_map[preds[i][j]])
return preds_list, out_label_list
def compute_metrics(p: EvalPrediction) -> Dict:
preds_list, out_label_list = align_predictions(p.predictions, p.label_ids)
report = classification_report(out_label_list, preds_list)
output_report_file = os.path.join(training_args.output_dir, "classification_report.txt")
with open(output_report_file, "w") as writer:
writer.write(report)
return {
"precision": precision_score(out_label_list, preds_list),
"recall": recall_score(out_label_list, preds_list),
"f1": f1_score(out_label_list, preds_list),
}
# Initialize trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
# Perform training
if training_args.do_train:
trainer.train()
trainer.save_model()
# Can re-save tokenizer to same directory so taht can share model on huggingface.co/models
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
result = trainer.evaluate()
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
if trainer.is_world_master():
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
results.update(result)
# Predict
if training_args.do_predict:
test_dataset = SRLDataset(
data_path=data_args.test_data_path,
tokenizer=tokenizer,
model_type=config.model_type,
labels_file=data_args.labels.rsplit('/', 1)[-1],
labels=labels,
predict_input=False,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
metadata=data_args.model_metadata,
)
predictions, label_ids, metrics = trainer.predict(test_dataset)
preds_list, label_list = align_predictions(predictions, label_ids)
output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")
if trainer.is_world_master():
with open(output_test_results_file, "w") as writer:
for key, value in metrics.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
# Save predictions
output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")
if not os.path.isdir(data_args.test_data_path):
adc_output_file = os.path.join(training_args.output_dir, "adc_output.txt")
if trainer.is_world_master():
with open(output_test_predictions_file, "w") as output_writer, open(adc_output_file, "w") as adc_writer:
with open(data_args.test_data_path, "r") as f:
example_id = 0
for line in f:
str_list = line.strip().split()
separate_index = str_list.index("|||")
sentence = str_list[1:separate_index]
tags = str_list[separate_index+1:]
predicate_idx = str_list[0]
gold_srl = label_list[example_id]
pred_srl = preds_list[example_id]
gold_srl = gold_srl[:-1]
pred_srl = pred_srl[:-1]
output_line = "{0} {1} ||| {2}\n".format(str(predicate_idx), " ".join(sentence), " ".join(pred_srl))
adc_writer.write(output_line)
output_writer.write("sentence: " + " ".join(sentence) + "\n")
output_writer.write("input tags: " + " ".join(tags) + "\n")
output_writer.write("gold srl: " + " ".join(gold_srl) + "\n")
output_writer.write("pred srl: " + " ".join(pred_srl) + "\n")
example_id += 1
else:
if trainer.is_world_master():
with open(output_test_predictions_file, "w") as output_writer:
for index in range(len(preds_list)):
gold_srl = label_list[index]
pred_srl = preds_list[index]
output_writer.write("new sentence:\n") # TODO replace with actual sentence if can find it
output_writer.write(" ".join(gold_srl) + "\n")
output_writer.write(" ".join(pred_srl) + "\n")
return results
def _mp_fn(index):
"""
For xla_spawn (TPUs)
"""
main()
if __name__ == "__main__":
main()