-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnlp model.py
40 lines (31 loc) · 1.12 KB
/
nlp model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import pandas as pd
dataset = pd.read_csv('/Users/karanrochlani/Desktop/karan.tsv',delimiter='\t',quoting=3)
import re
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
corpus=[]
for i in range(0,95):
review=re.sub('[^a-zA-Z]',' ',dataset['Reviews'][i])
review=review.lower()
review=review.split()
review=[word for word in review if not word in set(stopwords.words('english'))]
review=' '.join(review)
corpus.append(review)
from sklearn.feature_extraction.text import CountVectorizer
cv=CountVectorizer()
X=cv.fit_transform(corpus).toarray()
y=dataset['Rating']
from sklearn.preprocessing import LabelEncoder
labelencoder=LabelEncoder()
y=labelencoder.fit_transform(y)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)
from sklearn.naive_bayes import GaussianNB
classifier=GaussianNB()
classifier.fit(X_train,y_train)
y_pred=classifier.predict(X_test)
from sklearn.metrics import confusion_matrix
cm=confusion_matrix(y_test,y_pred)
from sklearn.metrics import accuracy_score
accuracy_score(y_test,y_pred)