-
Notifications
You must be signed in to change notification settings - Fork 0
/
debug_tram.py
129 lines (85 loc) · 3.81 KB
/
debug_tram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import pickle
import pandas as pd
from sklearn.preprocessing import LabelEncoder
import xgboost as xgb
import datetime
import json
import optparse
def calculate_sum_time(config_file, source_location, target_location, first_ata, reverse=False):
config = json.load(open(config_file))
print(f"Config file {config_file} loaded!")
xgb_model_prime = pickle.load(open(config["prime_model"], "rb"))
xgb_model_second = pickle.load(open(config["second_model"], "rb"))
dd = pd.read_csv(config["loc_dataset"])
df = pd.read_csv(config["loc_predictions"])
locations_be = dd.reset_index().loc[dd[dd["location"] == source_location].index.min():dd[dd["location"] == target_location].index.min(), ["location"]]
locations_ne = dd.reset_index().loc[dd[dd["location"] == target_location].index.min():dd[dd["location"] == source_location].index.min(), ["location"]]
if locations_ne.shape[0] > 1:
locations = locations_ne[::-1]
else:
locations = locations_be
print(f"Locations loaded. They are {[l[0] for l in list(locations.values)]}")
le = LabelEncoder()
le.fit(dd.loc[:, ["location"]].values.ravel())
locations_label = le.transform(locations.values.ravel())
print(f"Locations converted to label. Labels are {locations_label}")
atas = [first_ata]
atds = []
predicted_a = []
predicted_b = []
for i, loc in enumerate(locations_label):
print(f"{i}-th location...")
X_prime = pd.DataFrame.from_dict({"location": [loc], "actual_ta": [atas[-1]], "gbtt_ptd": [int(df[df["loc"] == le.inverse_transform([loc])[0]]["ptd"])]})
X_prime_pred = int(xgb_model_prime.predict(X_prime)[0])
print(f"Primary Prediction {X_prime_pred} made.")
ata_ls = list(str(atas[-1]))
if ata_ls[0:2] == ["2", "4"]:
ata_ls[0:2] = ["0", "0"]
ata_n = "".join(ata_ls)
ata_dt = datetime.datetime.strptime(ata_n, "%H%M")
dt_1 = ata_dt + datetime.timedelta(minutes=X_prime_pred)
atds.append(int(dt_1.strftime("%H%M")))
print(f"Departures appended with {atds[-1]}")
X_second = pd.DataFrame.from_dict({"location": [loc], "actual_td": [atds[-1]], "gbtt_pta": [int(df[df["loc"] == le.inverse_transform([loc])[0]]["pta"])]})
X_second_pred = int(xgb_model_second.predict(X_second)[0])
print(f"Secondary prediction {X_second_pred} made")
dt_2 = ata_dt + datetime.timedelta(minutes=X_second_pred)
if dt_2.strftime("%H%M")[:2] == "00":
ata_ls = list(dt_2.strftime("%H%M"))
ata_ls[:2] = ["2", "4"]
ata = int("".join(ata_ls))
else:
ata = int(dt_2.strftime("%H%M"))
atas.append(ata)
print(f"Arrivals appended with {atas[-1]}")
predicted_a.append(X_prime_pred), predicted_b.append(X_second_pred)
atas = atas[:-1]
locat_out = [l[0] for l in list(locations.values)]
if reverse:
print(f"Reversing...")
atas.reverse()
atds.reverse()
predicted_a.reverse()
predicted_b.reverse()
locat_out.reverse()
return {"locations":locat_out, "arrivals": atas, "departures": atds, "predicted_a": predicted_a, "predicted_b": predicted_b}
if __name__ == "__main__":
parser = optparse.OptionParser()
parser.add_option('-c', '--config',
action="store", dest="config",
help="Config file", default="config.json")
parser.add_option('-s', '--source',
action="store", dest="source",
help="Source")
parser.add_option('-d', '--dest',
action="store", dest="dest",
help="Destination")
parser.add_option('-a', '--arrival',
action="store", dest="arrival",
help="Arrival time", type="int")
parser.add_option('-i', '--inverse',
const=True, dest="inverse", action="store_const",
help="Inverse", default=False)
options, args = parser.parse_args()
args = parser.parse_args()
print(calculate_sum_time(options.config, options.source, options.dest, options.arrival, reverse=options.inverse))