-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_data.py
32 lines (26 loc) · 1013 Bytes
/
example_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import kornia.augmentation
from torch.utils.data import DataLoader
import yim_dataset
DATASET_PATH: str = "/Users/christoph/Desktop/yeast_cell_in_microstructures_dataset/dataset/train"
def main() -> None:
# Init augmentations
transforms = kornia.augmentation.AugmentationSequential(
kornia.augmentation.RandomHorizontalFlip(p=1.0),
data_keys=["input", "bbox_xyxy", "mask"],
same_on_batch=False,
)
# Init dataset
dataset = yim_dataset.data.YIMDataset(path=DATASET_PATH, augmentations=transforms)
# Make data loader
data_loader = DataLoader(
dataset=dataset,
num_workers=2,
batch_size=2,
drop_last=True,
collate_fn=yim_dataset.data.collate_function_yim_dataset,
)
# Loop over data loader
for index, (images, instances, bounding_boxes, class_labels) in enumerate(data_loader):
print(index, images.shape, len(instances), len(bounding_boxes), len(class_labels))
if __name__ == "__main__":
main()