You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
thanks for your contribution!
Here, for some reason, i need to realize the "involution2D,3D" by myself, and I take this project for validation.
However, my results can not be the same as yours. In the begining, i think it may be my fault, but after check i am not sure!!!
So could you help me?
Here is my question:
1、I think the “Tensor.unfold()" use in "involution.py" are not right........( may be ).
Here is the code ( with problems):
‘’‘
input_unfolded = self.pad(input_initial)
.unfold(dimension=2, size=self.kernel_size[0], step=self.stride[0])
.unfold(dimension=3, size=self.kernel_size[1], step=self.stride[1])
.unfold(dimension=4, size=self.kernel_size[2], step=self.stride[2])
input_unfolded = input_unfolded.reshape(batch_size, self.groups, self.out_channels // self.groups,
self.kernel_size[0] * self.kernel_size[1] * self.kernel_size[2], -1)
input_unfolded = input_unfolded.reshape(tuple(input_unfolded.shape[:-1])
+ (out_depth, out_height, out_width))
’‘’
In officials, they use "nn.Unfold()" and this is right.
the Tensor.unfold() returns ”B,C,H,W,K,K“, and the "nn.Unfold()" returns "B,CxKxK,HxW".
So I think the " permute" needed be used if use ”Tensor.unfold()“.
And I give an example for comparsion:
################The Code:##############
def nnUnfold_Tensorunfold():
input = torch.ones((1, 1, 5, 5))
# ----------------nnUnfold----------------- #
Unfold1 = nn.Unfold(3, 1, (3 - 1) // 2, 1)
input_unfolded = Unfold1(input) #====>B,CxKxK,HxW
input_unfolded = input_unfolded.contiguous().view(1,9,5,5)
print("Official: nn.Unfold():",input_unfolded)
# ---------------Tensorunfold--------------- #
pad = nn.ConstantPad2d(padding=(1, 1,1, 1), value=0.)
input = pad(input)
input_unfolded = input
input_unfolded = input_unfolded.unfold(dimension=2, size=3, step=1)
input_unfolded = input_unfolded.unfold(dimension=3, size=3, step=1) #===>B,C,H,W,K,K
before = input_unfolded.contiguous().view(1,9,5,5)
print("Wrong: Tensor.unfold():",before)
after = input_unfolded.permute(0,1,4,5,2,3).contiguous().view(1,9,5,5) #====> permute should be used
print("Right: after permute:",after)
# --------------------------------- #
if name == 'main':
nnUnfold_Tensorunfold()
thanks for your contribution!
Here, for some reason, i need to realize the "involution2D,3D" by myself, and I take this project for validation.
However, my results can not be the same as yours. In the begining, i think it may be my fault, but after check i am not sure!!!
So could you help me?
Here is my question:
1、I think the “Tensor.unfold()" use in "involution.py" are not right........( may be ).
Here is the code ( with problems):
‘’‘
input_unfolded = self.pad(input_initial)
.unfold(dimension=2, size=self.kernel_size[0], step=self.stride[0])
.unfold(dimension=3, size=self.kernel_size[1], step=self.stride[1])
.unfold(dimension=4, size=self.kernel_size[2], step=self.stride[2])
input_unfolded = input_unfolded.reshape(batch_size, self.groups, self.out_channels // self.groups,
self.kernel_size[0] * self.kernel_size[1] * self.kernel_size[2], -1)
input_unfolded = input_unfolded.reshape(tuple(input_unfolded.shape[:-1])
+ (out_depth, out_height, out_width))
’‘’
In officials, they use "nn.Unfold()" and this is right.
the Tensor.unfold() returns ”B,C,H,W,K,K“, and the "nn.Unfold()" returns "B,CxKxK,HxW".
So I think the " permute" needed be used if use ”Tensor.unfold()“.
And I give an example for comparsion:
################The Code:##############
def nnUnfold_Tensorunfold():
input = torch.ones((1, 1, 5, 5))
# ----------------nnUnfold----------------- #
Unfold1 = nn.Unfold(3, 1, (3 - 1) // 2, 1)
input_unfolded = Unfold1(input) #====>B,CxKxK,HxW
input_unfolded = input_unfolded.contiguous().view(1,9,5,5)
print("Official: nn.Unfold():",input_unfolded)
# ---------------Tensorunfold--------------- #
pad = nn.ConstantPad2d(padding=(1, 1,1, 1), value=0.)
input = pad(input)
input_unfolded = input
input_unfolded = input_unfolded.unfold(dimension=2, size=3, step=1)
input_unfolded = input_unfolded.unfold(dimension=3, size=3, step=1) #===>B,C,H,W,K,K
before = input_unfolded.contiguous().view(1,9,5,5)
print("Wrong: Tensor.unfold():",before)
after = input_unfolded.permute(0,1,4,5,2,3).contiguous().view(1,9,5,5) #====> permute should be used
print("Right: after permute:",after)
# --------------------------------- #
if name == 'main':
nnUnfold_Tensorunfold()
################The Results:##############
Official: nn.Unfold(): tensor([[[[0., 0., 0., 0., 0.],
[0., 1., 1., 1., 1.],
[0., 1., 1., 1., 1.],
[0., 1., 1., 1., 1.],
[0., 1., 1., 1., 1.]],
Wrong: Tensor.unfold(): tensor([[[[0., 0., 0., 0., 1.],
[1., 0., 1., 1., 0.],
[0., 0., 1., 1., 1.],
[1., 1., 1., 0., 0.],
[0., 1., 1., 1., 1.]],
Right: after permute: tensor([[[[0., 0., 0., 0., 0.],
[0., 1., 1., 1., 1.],
[0., 1., 1., 1., 1.],
[0., 1., 1., 1., 1.],
[0., 1., 1., 1., 1.]],
########################################
Maybe i am wrong..... could you help me?
The text was updated successfully, but these errors were encountered: