-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPeakDetection.py
124 lines (104 loc) · 4.6 KB
/
PeakDetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import numpy as np
from scipy.ndimage.filters import maximum_filter, minimum_filter, gaussian_filter
from scipy.ndimage.measurements import label
from matplotlib import pyplot as plt
def StormTrackMetrics(inputData,neighbourhoodSize=30):
nX = inputData.shape[0]
maxFilterData = maximum_filter(inputData[nX/2::], size=neighbourhoodSize,mode='wrap')
minFilterData = minimum_filter(inputData[nX/2::], size=neighbourhoodSize,mode='wrap')
blurredData = gaussian_filter(inputData,10.0*neighbourhoodSize,mode='wrap')
maxPoints = inputData[nX/2::] == maxFilterData
threshold = 0.5e-3
diff = ((maxFilterData-minFilterData) > threshold)
thresholdArray = (diff==0)
maxPoints[thresholdArray] = 0
maxIndicies = np.where(maxPoints)
print maxIndicies
for iPoint in range(0,len(maxIndicies[0])):
maxIndicies[0][iPoint] = maxIndicies[0][iPoint] + nX/2
peakEKE = inputData[maxIndicies[0][0]]
stormTrackEndIndex = maxIndicies[0][0]
currentValue = inputData[stormTrackEndIndex]
blurredValue = blurredData[stormTrackEndIndex]
while (currentValue > blurredValue):
stormTrackEndIndex = stormTrackEndIndex + 1
if stormTrackEndIndex == nX:
stormTrackEndIndex = 0
currentValue = inputData[stormTrackEndIndex]
blurredValue = blurredData[stormTrackEndIndex]
if stormTrackEndIndex < maxIndicies[0][0]:
integratedEKE = np.sum(inputData[maxIndicies[0][0]::])
integratedEKE = integratedEKE + np.sum(inputData[0:stormTrackEndIndex])
else:
integratedEKE = np.sum(inputData[maxIndicies[0][0]:stormTrackEndIndex])
return peakEKE, maxIndicies[0][0], stormTrackEndIndex, integratedEKE
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter.
The Savitzky-Golay filter removes high frequency noise from data.
It has the advantage of preserving the original shape and
features of the signal better than other types of filtering
approaches, such as moving averages techniques.
Parameters
----------
y : array_like, shape (N,)
the values of the time history of the signal.
window_size : int
the length of the window. Must be an odd integer number.
order : int
the order of the polynomial used in the filtering.
Must be less then `window_size` - 1.
deriv: int
the order of the derivative to compute (default = 0 means only smoothing)
Returns
-------
ys : ndarray, shape (N)
the smoothed signal (or it's n-th derivative).
Notes
-----
The Savitzky-Golay is a type of low-pass filter, particularly
suited for smoothing noisy data. The main idea behind this
approach is to make for each point a least-square fit with a
polynomial of high order over a odd-sized window centered at
the point.
Examples
--------
t = np.linspace(-4, 4, 500)
y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape)
ysg = savitzky_golay(y, window_size=31, order=4)
import matplotlib.pyplot as plt
plt.plot(t, y, label='Noisy signal')
plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal')
plt.plot(t, ysg, 'r', label='Filtered signal')
plt.legend()
plt.show()
References
----------
.. [1] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of
Data by Simplified Least Squares Procedures. Analytical
Chemistry, 1964, 36 (8), pp 1627-1639.
.. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery
Cambridge University Press ISBN-13: 9780521880688
"""
import numpy as np
from math import factorial
try:
window_size = np.abs(np.int(window_size))
order = np.abs(np.int(order))
except ValueError, msg:
raise ValueError("window_size and order have to be of type int")
if window_size % 2 != 1 or window_size < 1:
raise TypeError("window_size size must be a positive odd number")
if window_size < order + 2:
raise TypeError("window_size is too small for the polynomials order")
order_range = range(order+1)
half_window = (window_size -1) // 2
# precompute coefficients
b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
# pad the signal at the extremes with
# values taken from the signal itself
firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
y = np.concatenate((firstvals, y, lastvals))
return np.convolve( m[::-1], y, mode='valid')