-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_vectornet.py
executable file
·99 lines (86 loc) · 3.87 KB
/
test_vectornet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import sys
from os.path import join as pjoin
from datetime import datetime
import argparse
# from torch.utils.data import DataLoader
from torch_geometric.data import DataLoader
from core.dataloader.dataset import GraphDataset
# from core.dataloader.argoverse_loader import Argoverse, GraphData, ArgoverseInMem
from core.dataloader.argoverse_loader_v2 import GraphData, ArgoverseInMem
from core.trainer.tnt_trainer import TNTTrainer
from core.trainer.vectornet_trainer import VectorNetTrainer
import random
sys.path.append("core/dataloader")
def test(args):
"""
script to test the tnt model
"param args:
:return:
"""
# config
time_stamp = datetime.now().strftime("%m-%d-%H-%M-"+str(random.random())[:4])
output_dir = pjoin(args.save_dir, time_stamp)
if os.path.exists(output_dir) and len(os.listdir(output_dir)) > 0:
raise Exception("The output folder does exists and is not empty! Check the folder.")
else:
os.makedirs(output_dir)
# data loading
try:
test_set = ArgoverseInMem(pjoin(args.data_root, "{}_intermediate".format(args.split)))
print(pjoin(args.data_root, "{}_intermediate".format(args.split)))
print(test_set)
except:
raise Exception("Failed to load the data, please check the dataset!")
# init trainer
trainer = VectorNetTrainer(
trainset=test_set,
evalset=test_set,
testset=test_set,
batch_size=args.batch_size,
num_workers=args.num_workers,
aux_loss=True,
with_cuda=args.with_cuda,
cuda_device=args.cuda_device,
save_folder=output_dir,
ckpt_path=args.resume_checkpoint if hasattr(args, "resume_checkpoint") and args.resume_checkpoint else None,
model_path=args.resume_model if hasattr(args, "resume_model") and args.resume_model else None
)
# trainer = TNTTrainer(
# trainset=test_set,
# evalset=test_set,
# testset=test_set,
# batch_size=args.batch_size,
# num_workers=args.num_workers,
# aux_loss=True,
# enable_log=False,
# with_cuda=args.with_cuda,
# cuda_device=args.cuda_device,
# save_folder=output_dir,
# ckpt_path=args.resume_checkpoint if hasattr(args, "resume_checkpoint") and args.resume_checkpoint else None,
# model_path=args.resume_model if hasattr(args, "resume_model") and args.resume_model else None
# )
# trainer.test(miss_threshold=2.0, save_pred=True, convert_coordinate=True)
trainer.test_latency()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-r", "--data_root", type=str, default="dataset/interm_data_2022",
help="root dir for datasets")
parser.add_argument("-s", "--split", type=str, default="test")
parser.add_argument("-b", "--batch_size", type=int, default=128,
help="number of batch_size")
parser.add_argument("-w", "--num_workers", type=int, default=16,
help="dataloader worker size")
parser.add_argument("-c", "--with_cuda", action="store_true", default=True,
help="training with CUDA: true, or false")
parser.add_argument("-cd", "--cuda_device", type=int, default=0,
help="CUDA device ids")
parser.add_argument("-rc", "--resume_checkpoint", type=str,
# default="/home/jb/projects/Code/trajectory-prediction/TNT-Trajectory-Predition/run/tnt/05-21-07-33/checkpoint_iter26.ckpt",
help="resume a checkpoint for fine-tune")
parser.add_argument("-rm", "--resume_model", type=str,
# default="/home/jb/Downloads/TNT/TNT/best_TNT.pth",
help="resume a model state for fine-tune")
parser.add_argument("-d", "--save_dir", type=str, default="test_result")
args = parser.parse_args()
test(args)