PointSCNet: Point Cloud Structure and Correlation Learning based on Space Filling Curve guided Sampling
This repository contains the code for our paper: PointSCNet: Point Cloud Structure and Correlation Learning based on Space Filling Curve guided Sampling
Current Code is tested on ubuntu18.04 with cuda11, python3.6.9, torch 1.10.0 and torchvision 0.11.3. We use a pytorch version of pointnet++ in our pipeline.
Download alignment ModelNet here and save in data/modelnet40_normal_resampled/
.
python train.py --model SCNet --log_dir SCNet_log --use_normals --process_data
- --model: model name
- --log_dir: path to log dir
- --use_normals: use normals
- --process_data: save data offline
python test.py --log_dir SCNet_log --use_normals
Model | Accuracy |
---|---|
PointNet (Official) | 89.2 |
PointNet2 (Official) | 91.9 |
PointSCNet | 93.7 |
Please cite our paper if you find it useful in your research:
@article{chen2022pointscnet,
title={PointSCNet: Point Cloud Structure and Correlation Learning Based on Space-Filling Curve-Guided Sampling},
author={Chen, Xingye and Wu, Yiqi and Xu, Wenjie and Li, Jin and Dong, Huaiyi and Chen, Yilin},
journal={Symmetry},
volume={14},
number={1},
pages={8},
year={2022},
publisher={Multidisciplinary Digital Publishing Institute}
}
If you have any questions, please contact cxy@cug.edu.cn