-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
804 lines (628 loc) · 35.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
import os
import sys
import gc
import math
import time
import shutil
import argparse
from tqdm import tqdm
import numpy as np
import pickle
import torch
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from sklearn.utils import shuffle
from sklearn.metrics import roc_auc_score, roc_curve
from sklearn.decomposition import PCA
import random
from meters import AverageMeter
from logger import WandbLogger
import pandas as pd
from model import CytoSetModel
from model import Config, count_params
from data import CytoDatasetFromFCS
from utils import (
EarlyStopping, load_fcs_dataset, train_valid_split, combine_samples, down_rsampling
)
from sklearn.mixture import GaussianMixture
# for triplet
import torch.nn.functional as F
from torch.autograd import Variable
from sklearn.metrics import mean_squared_error
from sklearn.ensemble import RandomForestClassifier
random_state = np.random.RandomState(0)
clf_label = RandomForestClassifier(random_state=random_state)
clf_age = RandomForestClassifier(random_state=random_state)
def set_seed(seed):
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
def tune_percent3(precentage_weight,args_device,percent_scale,base_value, set_num_base=100):
max_a, ids = torch.max(precentage_weight, 1, keepdim=True)
precentage_weight=torch.scatter(precentage_weight,1, ids, set_num_base)
set_range=torch.arange(1,percent_scale+1)/10*base_value
set_range=set_range.to(args_device.device)
precentage_weight=torch.sum(precentage_weight/set_num_base*set_range,1)
precentage_weight=torch.round(precentage_weight*10)
precentage_weight=torch.mode(precentage_weight)[0]/10
return precentage_weight
# input triplet data
def load_triplet(root,number_base,triplet_filenmae,filename,label_file,percentage):
filenamelist=[]
filenameage=[]
triplet_id = np.empty((0,3), int)
triplet_age = np.empty((0,3), int)
label_data=pd.read_csv(os.path.join(root, label_file))#all?(old: cla)
label_ls=list(label_data['file_id'])#all?(old: cla)
for line in open(os.path.join(root, filename)):
single_file=line.rstrip('\n')
single_file=single_file.split("/")[1]
# filenamelist.append(single_file[5:10])#pree
# filenameage.append(single_file[12:14])#pree
# filenamelist.append(single_file.split('.')[0]) #preterm
# label_idx=label_ls.index(single_file) #preterm
# filenameage.append(label_data[triplet_filenmae.split('_')[0]][label_idx]) #preterm
filenamelist.append(single_file.split('_')[1]) #lung
label_idx=label_ls.index(single_file) #lung
filenameage.append(label_data[triplet_filenmae.split('_')[0]][label_idx]) #lung
for line in open(os.path.join(root,'tripletlists_maxDrugRelatedAE_'+number_base, triplet_filenmae)): # change end name
single_triplet=line.rstrip('\n')
single_triplet=single_triplet.split(' ')
id_string=[np.array(filenamelist)[int(single_triplet[0])],np.array(filenamelist)[int(single_triplet[1])],np.array(filenamelist)[int(single_triplet[2])]]
age_string=[np.array(filenameage)[int(single_triplet[0])],np.array(filenameage)[int(single_triplet[1])],np.array(filenameage)[int(single_triplet[2])]]
triplet_id = np.append(triplet_id, [np.array(id_string)], axis=0)
triplet_age = np.append(triplet_age, [np.array(age_string)], axis=0)
sampled_list = random.sample(range(0,len(triplet_id),1), int(len(triplet_id)*percentage))
triplet_id=triplet_id[sampled_list]
triplet_age=triplet_age[sampled_list]
return triplet_id,triplet_age
def intersection(lst1, lst2):
return list(set(lst1) & set(lst2))
def accuracy(dist_a, dist_b):
margin = 0
pred = (dist_a - dist_b - margin).cpu().data
return (pred > 0).sum()*1.0/dist_a.size()[0]
def test_valid(test_loader, model, args):
""" Test the model performance """
model.eval()
losses = AverageMeter(round=3)
correct_num, total_num,svm_correct_num, svm_total_num,svm_avg_mse = 0, 0, 0, 0, 0
y_pred, y_true = [], []
a_pred, a_true = [], []
val_embd_concatenate=np.zeros((0,args.h_dim), dtype=float)
val_true_label_concatenate=np.zeros((0,), dtype=int)
val_true_age_concatenate=np.zeros((0,), dtype=int)
save_loss=dict()
for x, y, a, sid in test_loader:
x, y , a = x.to(args.device), y.to(args.device), a.to(args.device)
with torch.no_grad():
prob, pred_age,get_ckpt,alpha_percentage,same_percentage,diff_percentage = model(x)
alpha_percentage=tune_percent3(alpha_percentage,args,9,1)
same_percentage=tune_percent3(same_percentage,args,5,2)
diff_percentage=tune_percent3(diff_percentage,args,5,2)
triplet_smaple,triplet_label=[],[]
for set_percentage in range(1,11,1):
sub_triplet_sample, sub_triplet_age=load_triplet('/playpen-ssd/chijane/data_lung/data_lung_1',str(int(args.name_end)),'DrugRelatedAE_tripletlist_subpick_trainval_rffmax_same'+str(format(same_percentage.item(),'.1f'))+'_diff'+str(format(diff_percentage.item(),'.1f'))+'.txt','filenames_'+str(int(args.name_end))+'.json','fcs_info.csv',set_percentage/10)
triplet_smaple.append(sub_triplet_sample)
triplet_label.append(sub_triplet_age)
triplet_table=[]
for per_triplet_smaple in triplet_smaple:
checking_table = np.empty((0,3), int)
for single_triplet in per_triplet_smaple:
check_bool=[]
for triplet_id in single_triplet:
if int(triplet_id) in sid.tolist():
check_bool.append(1)
else:
check_bool.append(0)
checking_table = np.append(checking_table, [np.array(check_bool)], axis=0)
triplet_table.append(checking_table)
sid_arr=sid.detach().cpu().numpy()
a_arr=a.detach().cpu().numpy()
y_arr=y.detach().cpu().numpy()
ckpt_arr=get_ckpt.detach().cpu().numpy()
for set_percentage in range(1,11,1):
data1_id_lst=list()
data2_id_lst=list()
data3_id_lst=list()
get_triplst=triplet_smaple[set_percentage-1]
age_triplst=triplet_label[set_percentage-1]
checking_table=triplet_table[set_percentage-1]
for single_lst in range(0,len(checking_table),1):
if sum(checking_table[single_lst])==3:
data1_idx=intersection(np.where(sid_arr==int(get_triplst[single_lst][0]))[0],np.where(a_arr==int(age_triplst[single_lst][0]))[0])
data2_idx=intersection(np.where(sid_arr==int(get_triplst[single_lst][1]))[0],np.where(a_arr==int(age_triplst[single_lst][1]))[0])
data3_idx=intersection(np.where(sid_arr==int(get_triplst[single_lst][2]))[0],np.where(a_arr==int(age_triplst[single_lst][2]))[0])
if len(data1_idx)>0 and len(data2_idx)>0 and len(data3_idx)>0:
data1_id_lst.append(random.choice(data1_idx))
data2_id_lst.append(random.choice(data2_idx))
data3_id_lst.append(random.choice(data3_idx))
if len(data1_id_lst)>0 and len(data2_id_lst)>0 and len(data3_id_lst)>0:
data1=get_ckpt[data1_id_lst]
data2=get_ckpt[data2_id_lst]
data3=get_ckpt[data3_id_lst]
dista = F.pairwise_distance(data1, data2, 2)
distb = F.pairwise_distance(data1, data3, 2)
target = torch.FloatTensor(dista.size()).fill_(1)
if torch.cuda.is_available():
target = target.cuda()
target = Variable(target)
result=F.margin_ranking_loss(dista, distb, target,margin=0.2, reduction = 'mean')
if set_percentage-1 not in save_loss.keys():
save_loss[set_percentage-1]=[result]
else:
get_loss_lst=save_loss[set_percentage-1]
get_loss_lst.append(result)
save_loss[set_percentage-1]=get_loss_lst
val_embd_concatenate=np.concatenate((val_embd_concatenate, ckpt_arr), axis=0)
val_true_label_concatenate=np.concatenate((val_true_label_concatenate, y_arr), axis=0)
val_true_age_concatenate=np.concatenate((val_true_age_concatenate, a_arr), axis=0)
pred_age = pred_age.int()
loss= (alpha_percentage) * F.binary_cross_entropy(prob, y, reduction='mean')+(1-alpha_percentage)*F.margin_ranking_loss(dista, distb, target,margin=0.2, reduction = 'mean')
pred_label = torch.ge(prob, 0.5)
losses.update(loss.item(), n=x.size(0))
v = (pred_label == y).sum()
y_true.append(y.detach().cpu().numpy())
y_pred.append(prob.detach().cpu().numpy())
a_true.append(a.detach().cpu().numpy())
a_pred.append(pred_age.detach().cpu().numpy())
correct_num += v.item()
total_num += x.size(0)
predict_label=clf_label.predict(np.array(val_embd_concatenate))
predict_age=clf_age.predict(np.array(val_embd_concatenate))
for i in save_loss.keys():
# loss_list=save_loss[i]
save_loss[i]=(sum(save_loss[i]))/len(save_loss[i])
if len(save_loss.keys())==0:
args.triplet_percent=(random.randint(0,9)+1)/10
else:
args.triplet_percent=(min(save_loss, key=save_loss.get)+1)/10
args.triplet_percent=1
print("test valid predict/true:",predict_label,val_true_label_concatenate)
num_correct = sum(p == t for p, t in zip(predict_label, val_true_label_concatenate))
print("test_valid SVM accuracy:",num_correct/len(predict_label),num_correct,len(predict_label))
svm_mse=sum(p == t for p, t in zip(val_true_age_concatenate, predict_age))
print("test MSE valid predict/true:",predict_age,val_true_age_concatenate)
print("test_valid MSE accuracy:",svm_mse/len(predict_label),svm_mse,len(predict_label))
print("in test_valid alpha=",format(alpha_percentage.item(),'.1f'))
svm_correct_num+=num_correct
svm_total_num+=len(predict_label)
svm_avg_mse+=svm_mse
acc = float(correct_num) / total_num
y_true, y_pred = np.hstack(y_true), np.hstack(y_pred)
y_pred_trans = np.copy(y_pred)
y_pred_trans[y_pred_trans==2]=0
y_true_trans = np.copy(y_true)
y_true_trans[y_true_trans==2]=0
auc = roc_auc_score(y_true_trans, y_pred_trans)
a_true, a_pred = np.hstack(a_true), np.hstack(a_pred)
age_binary=sum(p == t for p, t in zip(a_pred, a_true))/len(a_true)
return acc, losses.avg, auc,age_binary,svm_correct_num/svm_total_num,svm_avg_mse/svm_total_num
def test_model(test_samples, test_phenotypes, test_phenotypes_age, model, device,triplet_percent,seed_pick,alpha_pick,same_pick,diff_pick,name_end_pick):
model.eval()
correct_num, total_num = 0, 0
y_pred, y_true = [], []
a_pred, a_true = [], []
losses = []
ckpt_list = []
get_triplst, age_triplst=load_triplet('/playpen-ssd/chijane/data_lung/data_lung_1',str(int(name_end_pick)),'DrugRelatedAE_tripletlist_subpick_test_rffmax_same'+str(same_pick)+'_diff'+str(diff_pick)+'.txt','filenames_'+str(int(name_end_pick))+'.json','fcs_info.csv',1)
sid=pd.read_csv('/playpen-ssd/chijane/data_lung/data_lung_1/lung_fcs/all/test_labels_'+str(int(name_end_pick))+'.csv')
# sid=[int(one_sid.split('_')[1][0:5]) for one_sid in sid['fcs_filename']] # pree
# sid=[int(one_sid.split('.')[0]) for one_sid in sid['csv_filename']] #preterm
# sid=[int(one_sid.split('.')[0]) for one_sid in sid['fcs_filename']] #covid
sid=[int(one_sid.split('_')[1]) for one_sid in sid['fcs_filename']] #lung
tool_ckpt=[]
for sample, label ,age in zip(test_samples, test_phenotypes, test_phenotypes_age):
with torch.no_grad():
sample = torch.from_numpy(sample).to(device)
true_label = torch.tensor([label], dtype=torch.float32).to(device)
prob, pred_age,get_ckpt,alpha_percentage,same_pertentage,diff_percentage= model(sample)
ckpt_list.append(get_ckpt.detach().cpu().numpy())
pred_age = pred_age.int()
loss = (alpha_pick) * F.binary_cross_entropy(prob, true_label, reduction='mean')
pred_label = torch.ge(prob, 0.5)
losses.append(loss.item())
v = (pred_label == label).sum()
y_true.append(label)
y_pred.append(prob.detach().cpu().numpy())
a_true.append(age)
a_pred.append(pred_age.detach().cpu().numpy())
tool_ckpt.append(get_ckpt.detach().cpu().numpy())
correct_num += v.item()
total_num += 1
predict_label=clf_label.predict(np.array(tool_ckpt)[:,0,:])
label_prob=clf_label.predict_proba(np.array(tool_ckpt)[:,0,:])
label_prob = label_prob[:, 1]
predict_age=clf_age.predict(np.array(tool_ckpt)[:,0,:])
age_prob=clf_age.predict_proba(np.array(tool_ckpt)[:,0,:])
age_prob = age_prob[:, 1]
print("for alpha=",alpha_pick,seed_pick,triplet_percent,",same diff=",same_pick,diff_pick)
predict_label = [1 if single_label > 0 else 0 for single_label in predict_label]
num_correct = sum(p == t for p, t in zip(predict_label, np.array(y_true)))
svm_acc=num_correct/len(predict_label)
svm_mse= sum(p == t for p, t in zip(predict_age, np.array(a_true)))/len(predict_age)
checking_table = np.empty((0,3), int)
for single_triplet in get_triplst:
check_bool=[]
for triplet_id in single_triplet:
if int(triplet_id) in sid:
check_bool.append(1)
else:
check_bool.append(0)
checking_table = np.append(checking_table, [np.array(check_bool)], axis=0)
sid_arr=np.array(sid)
a_arr=np.array(a_true)
ckpt_arr=np.array(tool_ckpt)
data1= np.empty((0,1,256), float)
data2= np.empty((0,1,256), float)
data3= np.empty((0,1,256), float)
for single_lst in range(0,len(checking_table),1):
if sum(checking_table[single_lst])==3:
data1_idx=intersection(np.where(sid_arr==int(get_triplst[single_lst][0]))[0],np.where(a_arr==int(age_triplst[single_lst][0]))[0])
data2_idx=intersection(np.where(sid_arr==int(get_triplst[single_lst][1]))[0],np.where(a_arr==int(age_triplst[single_lst][1]))[0])
data3_idx=intersection(np.where(sid_arr==int(get_triplst[single_lst][2]))[0],np.where(a_arr==int(age_triplst[single_lst][2]))[0])
if len(data1_idx)>0 and len(data2_idx)>0 and len(data3_idx)>0:
data1_idx=random.choice(data1_idx)
data2_idx=random.choice(data2_idx)
data3_idx=random.choice(data3_idx)
data1=np.append(data1, [ckpt_arr[data1_idx]], axis=0)
data2=np.append(data2, [ckpt_arr[data2_idx]], axis=0)
data3=np.append(data3, [ckpt_arr[data3_idx]], axis=0)
data1=torch.from_numpy(data1)
data2=torch.from_numpy(data2)
data3=torch.from_numpy(data3)
data1, data2, data3 = data1.to(device), data2.to(device), data3.to(device)
dista = F.pairwise_distance(data1, data2, 2)
distb = F.pairwise_distance(data1, data3, 2)
target = torch.FloatTensor(dista.size()).fill_(1)
if torch.cuda.is_available():
target = target.cuda()
target = Variable(target)
loss_triplet=F.margin_ranking_loss(dista, distb, target,margin=0.2)
acc_triplet = accuracy(dista, distb)
acc = float(correct_num) / total_num
y_true, y_pred = np.array(y_true), np.hstack(y_pred)
a_true, a_pred = np.hstack(a_true), np.hstack(a_pred)
fpr, tpr, _ = roc_curve(y_true, y_pred, pos_label=1)
y_pred_trans = np.copy(y_pred)
y_pred_trans[y_pred_trans==2]=0
y_true_trans = np.copy(y_true)
y_true_trans[y_true_trans==2]=0
auc = roc_auc_score(y_true_trans, y_pred_trans)# pree y_true y_pred
age_mse=F.mse_loss(torch.Tensor(a_pred), torch.Tensor(a_true), reduction='mean')
print("test MSE",age_mse)
eval_loss = np.mean(np.array(losses))
dist_diff_list= []
age_diff_list= []
embedded_vector = np.empty((0,len(ckpt_list[0][0])), float)
for i_ckpt in range(0,len(ckpt_list),1):
embedded_vector = np.append(embedded_vector, [np.array(ckpt_list[i_ckpt][0])], axis=0)
for j_ckpt in range(i_ckpt+1,len(ckpt_list),1):
age_diff_list.append(abs(a_true[i_ckpt]-a_true[j_ckpt]))
ssum=float(torch.sqrt(sum(torch.flatten((torch.from_numpy(ckpt_list[i_ckpt] - ckpt_list[j_ckpt])).pow(2)))))
dist_diff_list.append(ssum)
embd_dict={'id':np.arange(0,len(a_true)),'sample_embd':list(embedded_vector),'label':y_true,'label_predict':predict_label,'label_prob':label_prob,'age': a_true,'age_predict':predict_age,'age_prob':age_prob}
df_embd = pd.DataFrame(embd_dict)
df_embd.to_csv('/playpen-ssd/chijane/cytoset/scripts/train/newlung_result/trail'+str(int(name_end_pick))+'/embd_balence_goodmax_alpha'+str(format(alpha_pick.item(),'.1f'))+'_'+str(seed_pick)+'same'+str(same_pick)+'_diff'+str(diff_pick)+'_forDrugRelatedAEmax.csv')
print("loss triplet: ",loss_triplet)
print("accuracy triplet: ",acc_triplet)
print("svm acc auc: ",svm_acc, roc_auc_score(y_true_trans, label_prob))
print("svm mse: ",svm_mse)
return eval_loss, acc, auc, fpr, tpr, age_mse.numpy()
def train(args):
set_seed(args.seed)
logger = WandbLogger(
logger_name=f'CytoSet-{args.ncell}@{args.pool}',
log_dir=args.log_dir,
stream=sys.stdout,
args=args,
wandb_project='CytoSet'
)
# set model
model = CytoSetModel(args).to(args.device)
early_stopping = EarlyStopping(patience=args.patience, verbose=True)
optimizer = optim.Adam(
model.parameters(),
lr=args.lr,
betas=(args.beta1, args.beta2),
weight_decay=args.wts_decay
)
if args.ckpt is not None:
print(f'Loading model from {args.ckpt}')
checkpoint = torch.load(args.ckpt, map_location='cpu' if not torch.cuda.is_available() else None)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optim'])
# set dataloader
if args.pkl:
with open(args.train_pkl, 'rb') as f:
_data = pickle.load(f)
train_samples, train_phenotypes = _data['sample'], _data['phenotype']
with open(args.test_pkl, 'rb') as f:
_data = pickle.load(f)
test_samples, test_phenotypes = _data['sample'], _data['phenotype']
else:
train_samples, train_phenotypes, train_phenotypes_age = load_fcs_dataset(
args.train_fcs_info, args.markerfile, args.co_factor
)
test_samples, test_phenotypes, test_phenotypes_age = load_fcs_dataset(
args.test_fcs_info, args.markerfile, args.co_factor
)
valid_phenotypes = train_phenotypes
valid_phenotypes_age = train_phenotypes_age
sample_id_list=np.array(pd.read_csv(args.train_fcs_info, sep=','))[:, 0]
train_samples_list=list()
for single_id in sample_id_list:
# raw_id=single_id.split(".") #preterm
# train_samples_list.append(raw_id[0]) #preterm
# raw_id=single_id.split("_")# pree
# train_samples_list.append(raw_id[1][0:5]) # pree
raw_id=single_id.split("_")# lung
train_samples_list.append(raw_id[1]) # lung
train_samples_array=np.array(train_samples_list)
train_samples_array=train_samples_array.astype(np.int)
if (args.valid_fcs_info is not None or args.valid_pkl is not None) or args.generate_valid:
if args.valid_fcs_info is not None:
valid_samples, valid_phenotypes, valid_phenotypes_age = load_fcs_dataset(
args.valid_fcs_info, args.markerfile, args.co_factor
)
X_train, id_train = combine_samples(train_samples, np.arange(len(train_samples)))
X_valid, id_valid = combine_samples(valid_samples, np.arange(len(valid_samples)))
elif args.valid_pkl is not None:
with open(args.valid_pkl, 'rb') as f:
_valid = pickle.load(f)
valid_samples, valid_phenotypes = _valid['sample'], _valid['phenotype']
X_train, id_train = combine_samples(train_samples, np.arange(len(train_samples)))
X_valid, id_valid = combine_samples(valid_samples, np.arange(len(valid_samples)))
else:
X_train, id_train, X_valid, id_valid = train_valid_split(
train_samples, np.arange(len(train_samples))
)
del train_samples
gc.collect()
X_train, id_train = shuffle(X_train, id_train)
train_data = CytoDatasetFromFCS(X_train, train_samples_array, id_train, train_phenotypes, train_phenotypes_age,
args.ncell, args.nsubset, args.per_sample)#id_train to train_samples_array[id_train] cla: X_train, train_samples_array, id_train, train_phenotypes, train_phenotypes_age,args.ncell, args.nsubset, args.per_sample
valid_data = CytoDatasetFromFCS(X_valid, train_samples_array, id_valid, valid_phenotypes, valid_phenotypes_age,
args.ncell, args.nsubset, args.per_sample)#id_valid to train_samples_array[id_valid]
else:
X_train, id_train = combine_samples(train_samples, np.arange(len(train_samples)))
del train_samples
gc.collect()
X_train, id_train = shuffle(X_train, id_train)
train_data = CytoDatasetFromFCS(X_train,train_samples_array, id_train, train_phenotypes,train_phenotypes_age,
args.ncell, args.nsubset, args.per_sample)
logger.info("Neither having valid dataset nor generating valid dataset, use train data as valid dataset")
valid_data = CytoDatasetFromFCS(X_train,train_samples_array, id_train, train_phenotypes,train_phenotypes_age,
args.ncell, args.nsubset, args.per_sample)
print("after loaddd")
train_loader = DataLoader(
train_data,
batch_size=args.batch_size,
shuffle=args.shuffle,
num_workers=1,
drop_last=True,
pin_memory=False
)
valid_loader = DataLoader(
valid_data,
batch_size=args.batch_size,
num_workers=1,
pin_memory=False,
drop_last=False
)
logger.info('**** Start Training ****')
logger.info(f' config: {args.ncell}@{args.pool}')
logger.info(f' Total epochs: {args.n_epochs}')
logger.info('Total Params: {:.2f}M'.format(count_params(model) / 1e6))
losses = AverageMeter(round=3)
data_time = AverageMeter(round=3)
step_time = AverageMeter(round=3)
best_auc = 0
best_svm_acc,best_svm_mse=0,0
pbar = tqdm(range(args.n_epochs), initial=0, dynamic_ncols=True, smoothing=0.01)
# start the main training loop
for epoch in pbar:
model.train()
embd_concatenate=np.zeros((0,args.h_dim), dtype=float)
true_label_concatenate=np.zeros((0,), dtype=int)
true_age_concatenate=np.zeros((0,), dtype=int)
# get the data
for x, y, a, sid in train_loader:
start_time = time.time()
x, y, a, sid = x.to(args.device), y.to(args.device), a.to(args.device), sid.to(args.device)
# count data moving time
data_time.update(time.time() - start_time)
# model feed forward
prob, pred_age,get_ckpt,alpha_percentage,same_percentage,diff_percentage= model(x)
alpha_percentage=tune_percent3(alpha_percentage,args,9,1)
same_percentage=tune_percent3(same_percentage,args,5,2)
diff_percentage=tune_percent3(diff_percentage,args,5,2)
# input triplet data
get_triplst, age_triplst=load_triplet('/playpen-ssd/chijane/data_lung/data_lung_1',str(int(args.name_end)),'DrugRelatedAE_tripletlist_subpick_trainval_rffmax_same'+str(format(same_percentage.item(),'.1f'))+'_diff'+str(format(diff_percentage.item(),'.1f'))+'.txt','filenames_'+str(int(args.name_end))+'.json','fcs_info.csv',args.triplet_percent)
checking_table = np.empty((0,3), int)
for single_triplet in get_triplst:
check_bool=[]
for triplet_id in single_triplet:
if int(triplet_id) in sid.tolist():
check_bool.append(1)
else:
check_bool.append(0)
checking_table = np.append(checking_table, [np.array(check_bool)], axis=0)
triplet_count=0
sid_arr=sid.detach().cpu().numpy()
a_arr=a.detach().cpu().numpy()
y_arr=y.detach().cpu().numpy()
ckpt_arr=get_ckpt.detach().cpu().numpy()
data1_id_lst=list()
data2_id_lst=list()
data3_id_lst=list()
for single_lst in range(0,len(checking_table),1):
if sum(checking_table[single_lst])==3:
triplet_count+=1
data1_idx=intersection(np.where(sid_arr==int(get_triplst[single_lst][0]))[0],np.where(a_arr==int(age_triplst[single_lst][0]))[0])
data2_idx=intersection(np.where(sid_arr==int(get_triplst[single_lst][1]))[0],np.where(a_arr==int(age_triplst[single_lst][1]))[0])
data3_idx=intersection(np.where(sid_arr==int(get_triplst[single_lst][2]))[0],np.where(a_arr==int(age_triplst[single_lst][2]))[0])
if len(data1_idx)>0 and len(data2_idx)>0 and len(data3_idx)>0:
data1_id_lst.append(random.choice(data1_idx))
data2_id_lst.append(random.choice(data2_idx))
data3_id_lst.append(random.choice(data3_idx))
data1=get_ckpt[data1_id_lst]
data2=get_ckpt[data2_id_lst]
data3=get_ckpt[data3_id_lst]
dista = F.pairwise_distance(data1, data2, 2)
distb = F.pairwise_distance(data1, data3, 2)
target = torch.FloatTensor(dista.size()).fill_(1)
if torch.cuda.is_available():
target = target.cuda()
target = Variable(target)
embd_concatenate=np.concatenate((embd_concatenate, ckpt_arr), axis=0) #ckpt_arr
true_label_concatenate=np.concatenate((true_label_concatenate, y_arr), axis=0)
true_age_concatenate=np.concatenate((true_age_concatenate, a_arr), axis=0)
pred_age = pred_age.int()
a_int=a.int()
th_bool=torch.eq(pred_age, a_int)
loss= (alpha_percentage) * F.binary_cross_entropy(prob, y, reduction='mean')+(1-alpha_percentage) *F.margin_ranking_loss(dista, distb, target,margin = 0.2, reduction = 'mean')
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
step_time.update(time.time() - start_time)
losses.update(loss.item())
clf_label.fit(embd_concatenate, true_label_concatenate)
clf_age.fit(embd_concatenate, true_age_concatenate)
print("train alpha=",alpha_percentage,"same=",same_percentage,"diff=",diff_percentage,"triplet_percent=",args.triplet_percent)
print("embd_concatenate\n",embd_concatenate)
# log the training progress
if (epoch + 1) % args.log_interval == 0:
val_acc, val_loss, val_auc, val_mse,get_svm_acc, get_svm_mse = test_valid(valid_loader, model, args)
pbar.set_description(
"Epoch: {}/{}, data: {:.3f}, step: {:.3f}, loss: {:.3f}, val_loss: {:.3f}, val_acc: {:.3f}, val_auc: {:.3f}, val_mse: {:.3f}".format(
str(epoch + 1).zfill(4), args.n_epochs, data_time.avg,
step_time.avg, losses.avg, val_loss, val_acc, val_auc, val_mse
)
)
stats = {
'epoch': epoch + 1,
'loss': losses.avg,
'val_loss': val_loss,
'val_acc': val_acc,
'val_auc': val_auc,
'val_mse': val_mse
}
logger._log_to_wandb(stats=stats, epoch=epoch + 1)
# check early stop condition
early_stopping(val_loss=val_loss)
if early_stopping.early_stop:
logger.info(f"Training early stops at epoch: {epoch+1}")
break
losses.reset()
data_time.reset()
step_time.reset()
if (epoch + 1) % args.save_interval == 0:
val_acc, val_loss, val_auc, val_mse,get_svm_acc, get_svm_mse = test_valid(valid_loader, model, args) # ,condition_mask,age_mask ,train_condition,train_age ,store_train_embd,store_train_label,store_train_age
is_best = val_auc >= best_auc
best_auc = max(best_auc, val_auc)
ckpt_file = f"{args.log_dir}/{str(epoch + 1).zfill(4)}.ckpt"
torch.save(
{
'model': model.state_dict(),
'optim': optimizer.state_dict(),
'args': args,
'val_acc': val_acc,
'val_auc': val_auc,
'val_mse': val_mse,
'epoch': epoch + 1
},
ckpt_file
)
if is_best:
# save the best model and check points
torch.save(model.state_dict(), f'{args.log_dir}/best_model.pt')
shutil.copyfile(ckpt_file, f'{args.log_dir}/best.ckpt')
print("Test SVM accuracy overall=",get_svm_acc)
print("svm MSE: ",get_svm_mse)
pbar.update()
pbar.close()
logger.info("**** Training Finished ****")
# load best model and check the performance on test data
# format test samples
test_samples = [np.expand_dims(sample, 0).astype(np.float32) for sample in test_samples]
if args.test_rsampling:
test_samples = [down_rsampling(sample, args.ncell, axis=1) for sample in test_samples]
state_dict = torch.load(f'{args.log_dir}/best_model.pt', map_location='cpu' if not torch.cuda.is_available else None)
model.load_state_dict(state_dict, strict=True)
print("before testset alpha=",format(alpha_percentage.item(),'.1f'))
# test model
_, test_acc, test_auc, test_fpr, test_tpr, test_mse = test_model(test_samples, test_phenotypes, test_phenotypes_age, model, args.device,args.triplet_percent,args.seed,alpha_percentage,format(same_percentage.item(),'.1f'),format(diff_percentage.item(),'.1f'),args.name_end) # ,train_condition,train_age ,store_train_embd,store_train_label,store_train_age
logger.info("Testing Acc: {:.3f}, Testing Auc: {:.3f}".format(test_acc, test_auc))
with open(f'{args.log_dir}/test_result.pkl', 'wb') as f:
test_stat = {
'test_sample': test_samples,
'test_phenotype': test_phenotypes,
'test_phenotype_age': test_phenotypes_age,
'fpr': test_fpr,
'tpr': test_tpr,
'test_acc': test_acc,
'test_auc': test_auc,
'test_mse': test_mse
}
pickle.dump(test_stat, f)
# Finished the training and testing, saving the configurations
logger.info("Testing finished, saving training configurations....")
config = Config.from_args(args)
config.to_json_file(f"{args.log_dir}/config.json")
logger.info("Done")
def main():
parser = argparse.ArgumentParser("Cytometry Set Model")
# model
parser.add_argument('--in_dim', default=37, type=int, help="input dim")
parser.add_argument('--h_dim', default=64, type=int, help='hidden dims to use in the model')
parser.add_argument('--pool', default='max', choices=['mean', 'max', 'sum'], type=str, help='block pooling type')
parser.add_argument('--out_pool', default='mean', choices=['mean', 'max', 'sum'], type=str, help='output pooling type')
parser.add_argument('--nblock', default=1, type=int, help="# of blocks to use in the model")
parser.add_argument('--triplet_percent', default=1, type=float, help="triplet percentage")
parser.add_argument('--alpha', default=0.5, type=float, help='percentage of cytoset')
parser.add_argument('--same_t', default=0.2, type=float, help='Threhold of same')
parser.add_argument('--diff_t', default=0.2, type=float, help='Threhold of diff')
parser.add_argument('--name_end', default=None, type=float, help='train/test file end name')
# optimizer
parser.add_argument('--lr', default=1e-4, type=float, help='learning rate')
parser.add_argument('--beta1', default=0.9, type=float, help='beta_1 params in the optimizer')
parser.add_argument('--beta2', default=0.999, type=float, help='beta_2 params in the optimizer')
parser.add_argument('--wts_decay', default=1e-3, type=float, help='coefficient of weight decay')
parser.add_argument('--patience', default=5, type=int, help='the patience param for early stopping')
# data
parser.add_argument('--train_fcs_info', type=str, default=None, help='path to train fcs info file')
parser.add_argument('--valid_fcs_info', default=None, type=str, help='path to valid fcs info file')
parser.add_argument('--test_fcs_info', type=str, default=None, help='path to test fcs info file')
parser.add_argument('--train_pkl', type=str, default=None, help='path to the training pickle file')
parser.add_argument('--valid_pkl', type=str, default=None, help='path to the valid pickle file')
parser.add_argument('--test_pkl', type=str, default=None, help='path to the testing pickle file')
parser.add_argument('--markerfile', type=str, help='path to marker indication file')
parser.add_argument('--generate_valid', action='store_true', help='whether to generate valid data from train data')
parser.add_argument('--test_rsampling', action='store_true', help='whether to test model using sampled data')
parser.add_argument('--pkl', action='store_true', help='load data directly from pickled data')
parser.add_argument('--batch_size', default=200, type=int, help='batch size of labeled data')
parser.add_argument('--nsubset', default=1024, type=int, help='total number of multi-cell inputs that will be generated per class')
parser.add_argument('--ncell', default=200, type=int, help='number of cells per multi-cell input')
parser.add_argument('--co_factor', default=5, type=float, help='arcsinh normalization factor')
parser.add_argument('--per_sample', action='store_true', help='whether the nsubset argument refers to each class or each input')
parser.add_argument('--shuffle', action='store_true', help='whether to shuffle the data')
parser.add_argument('--n_epochs', default=200, type=int, help='number of total training epochs')
parser.add_argument('--log_dir', default='./exp', type=str, help='path to log dir')
parser.add_argument('--log_interval', default=1, type=int, help='logging interval')
parser.add_argument('--save_interval', default=5, type=int, help='save model interval')
# utils
parser.add_argument('--seed', default=12345, type=int, help='random seed to use')
parser.add_argument('--device', default='cuda', type=str, help='specify the training device')
parser.add_argument('--ckpt', default=None, type=str, help='path to the checkpoint file')
args = parser.parse_args()
if not torch.cuda.is_available():
args.device = 'cpu'
# train the model
train(args)
if __name__ == "__main__":
main()