forked from world2vec/text-gan-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
194 lines (145 loc) · 7.57 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
""" Text GAN
Adverserial networks applied to language models using Gumbel Softmax.
Can be used as pure language model.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
from collections import namedtuple
import tensorflow as tf
from tensorflow.contrib.framework.python.ops.variables import get_or_create_global_step
# -- local imports
from data_loader import get_corpus_size, build_vocab, preprocess, get_input_queues
import layers as lay
from decoders import gumbel_decoder_fn
GENERATOR_PREFIX = "generator"
DISCRIMINATOR_PREFIX = "discriminator"
GeneratorTuple = namedtuple("Generator",
["rnn_outputs", "flat_logits", "probs", "loss"])
DiscriminatorTuple = namedtuple("Discriminator",
["rnn_final_state", "prediction_logits", "loss"])
# TODO: separate the variables for generator and discriminators
class Model:
def __init__(self, corpus, **opts):
self.corpus = corpus
self.opts = opts
self.global_step = get_or_create_global_step()
self.increment_global_step_op = tf.assign(self.global_step, self.global_step + 1, name="increment_global_step")
self.corpus_size = get_corpus_size(self.corpus["train"])
self.corpus_size_valid = get_corpus_size(self.corpus["valid"])
self.word2idx, self.idx2word = build_vocab(self.corpus["train"])
self.vocab_size = len(self.word2idx)
self.generator_template = tf.make_template(GENERATOR_PREFIX, generator)
self.discriminator_template = tf.make_template(DISCRIMINATOR_PREFIX, discriminator)
self.enqueue_data, _, source, target, sequence_length = \
prepare_data(self.corpus["train"], self.word2idx, num_threads=7, **self.opts)
# TODO: option to either do pretrain or just generate?
self.g_tensors_pretrain = self.generator_template(
source, target, sequence_length, self.vocab_size, **self.opts)
self.enqueue_data_valid, self.input_ph, source_valid, target_valid, sequence_length_valid = \
prepare_data(self.corpus["valid"], self.word2idx, num_threads=1, **self.opts)
self.g_tensors_pretrain_valid = self.generator_template(
source_valid, target_valid, sequence_length_valid, self.vocab_size, **self.opts)
self.decoder_fn = prepare_custom_decoder(sequence_length)
self.g_tensors_fake = self.generator_template(
source, target, sequence_length, self.vocab_size, decoder_fn=self.decoder_fn, **self.opts)
# TODO: using the rnn outputs from pretraining as "real" instead of target embeddings (aka professor forcing)
self.d_tensors_real = self.discriminator_template(
self.g_tensors_pretrain.rnn_outputs, sequence_length, is_real=True, **self.opts)
# TODO: check to see if sequence_length is correct
self.d_tensors_fake = self.discriminator_template(
self.g_tensors_fake.rnn_outputs, None, is_real=False, **self.opts)
self.g_tvars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=GENERATOR_PREFIX)
self.d_tvars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=DISCRIMINATOR_PREFIX)
def prepare_data(path, word2idx, num_threads=8, **opts):
with tf.device("/cpu:0"):
enqueue_data, dequeue_batch = get_input_queues(
path, word2idx, batch_size=opts["batch_size"], num_threads=num_threads)
# TODO: put this logic somewhere else
input_ph = tf.placeholder_with_default(dequeue_batch, (None, None))
source, target, sequence_length = preprocess(input_ph)
return enqueue_data, input_ph, source, target, sequence_length
def prepare_custom_decoder(sequence_length):
# TODO: this is brittle, global variables
cell = tf.get_collection("rnn_cell")[0]
encoder_state = cell.zero_state(tf.shape(sequence_length)[0], tf.float32)
embedding_matrix = tf.get_collection("embedding_matrix")[0]
output_projections = tf.get_collection("output_projections")[:2] # TODO: repeated output_projections
maximum_length = tf.reduce_max(sequence_length) + 3
decoder_fn = gumbel_decoder_fn(encoder_state, embedding_matrix, output_projections, maximum_length)
return decoder_fn
def generator(source, target, sequence_length, vocab_size, decoder_fn=None, **opts):
"""
Args:
source: TensorFlow queue or placeholder tensor for word ids for source
target: TensorFlow queue or placeholder tensor for word ids for target
sequence_length: TensorFlow queue or placeholder tensor for number of word ids for each sentence
vocab_size: max vocab size determined from data
decoder_fn: if using custom decoder_fn else use the default dynamic_rnn
"""
tf.logging.info(" Setting up generator")
# TODO: add batch norm?
rnn_outputs = (
source >>
lay.embedding_layer(vocab_size, opts["embedding_dim"], name="embedding_matrix") >>
lay.word_dropout_layer(keep_prob=opts["word_dropout_keep_prob"]) >>
lay.recurrent_layer(hidden_dims=opts["rnn_hidden_dim"], keep_prob=opts["recurrent_dropout_keep_prob"],
sequence_length=sequence_length, decoder_fn=decoder_fn, name="rnn_cell")
)
flat_logits = (
rnn_outputs >>
lay.reshape_layer(shape=(-1, opts["rnn_hidden_dim"])) >>
lay.dense_layer(hidden_dims=vocab_size, name="output_projections")
)
probs = flat_logits >> lay.softmax_layer()
if decoder_fn is not None:
return GeneratorTuple(rnn_outputs=rnn_outputs, flat_logits=flat_logits, probs=probs, loss=None)
loss = (
flat_logits >>
lay.cross_entropy_layer(target=target) >>
lay.reshape_layer(shape=tf.shape(target)) >>
lay.mean_loss_by_example_layer(sequence_length=sequence_length)
)
# TODO: add dropout penalty
return GeneratorTuple(rnn_outputs=rnn_outputs, flat_logits=flat_logits, probs=probs, loss=loss)
def discriminator(input_vectors, sequence_length, is_real=True, **opts):
"""
Args:
input_vectors: output of the RNN either from real or generated data
sequence_length: TensorFlow queue or placeholder tensor for number of word ids for each sentence
is_real: if True, RNN outputs when feeding in actual data, if False feeds in generated data
"""
tf.logging.info(" Setting up discriminator")
rnn_final_state = (
input_vectors >>
lay.dense_layer(hidden_dims=opts["embedding_dim"]) >>
lay.recurrent_layer(sequence_length=sequence_length, hidden_dims=opts["rnn_hidden_dim"],
return_final_state=True)
)
prediction_logits = (
rnn_final_state >>
lay.dense_layer(hidden_dims=opts["output_hidden_dim"]) >>
lay.relu_layer() >>
lay.dropout_layer(opts["output_dropout_keep_prob"]) >>
lay.dense_layer(hidden_dims=opts["output_hidden_dim"]) >>
lay.relu_layer() >>
lay.dropout_layer(opts["output_dropout_keep_prob"]) >>
lay.dense_layer(hidden_dims=1)
)
if is_real:
target = tf.ones_like(prediction_logits)
else:
target = tf.zeros_like(prediction_logits)
# TODO: add accuracy
loss = (
prediction_logits >>
lay.sigmoid_cross_entropy_layer(target=target)
)
# TODO: return logits in case for WGAN and l2 GANs
return DiscriminatorTuple(rnn_final_state=rnn_final_state, prediction_logits=prediction_logits, loss=loss)
if __name__ == "__main__":
from data_loader import DATA_PATH
from train import opts
corpus = DATA_PATH["ptb"]
model = Model(corpus, **opts)