-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathText analytics assignment INSHORTS (1).py
461 lines (360 loc) · 13.5 KB
/
Text analytics assignment INSHORTS (1).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# -*- coding: utf-8 -*-
"""
Created on Sat May 2 11:35:00 2020
@author: Chandra mouli
"""
import requests
from bs4 import BeautifulSoup
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import os
seed_urls = ['https://inshorts.com/en/read/technology',
'https://inshorts.com/en/read/sports',
'https://inshorts.com/en/read/world']
def build_dataset(seed_urls):
news_data = []
for url in seed_urls:
news_category = url.split('/')[-1]
data = requests.get(url)
soup = BeautifulSoup(data.content, 'html.parser')
news_articles = [{'news_headline': headline.find('span',
attrs={"itemprop": "headline"}).string,
'news_article': article.find('div',
attrs={"itemprop": "articleBody"}).string,
'news_category': news_category}
for headline, article in
zip(soup.find_all('div',
class_=["news-card-title news-right-box"]),
soup.find_all('div',
class_=["news-card-content news-right-box"]))
]
news_data.extend(news_articles)
df = pd.DataFrame(news_data)
df = df[['news_headline', 'news_article', 'news_category']]
return df
news_df = build_dataset(seed_urls)
news_df.head(10)
print(news_df)
c=news_df['news_headline']
print(c)
import nltk
nltk.download('stopwords')
stop_words = nltk.corpus.stopwords.words('english')
from bs4 import BeautifulSoup
import numpy as np
import re
import tqdm
import unicodedata
#EDA
def strip_html_tags(text):
soup = BeautifulSoup(text, "html.parser")
[s.extract() for s in soup(['iframe', 'script'])]
stripped_text = soup.get_text()
stripped_text = re.sub(r'[\r|\n|\r\n]+', '\n', stripped_text)
return stripped_text
def remove_accented_chars(text):
text = unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode('utf-8', 'ignore')
return text
import re
contractions_dict = {
'didn\'t': 'did not',
'don\'t': 'do not',
"aren't": "are not",
"can't": "cannot",
"cant": "cannot",
"can't've": "cannot have",
"'cause": "because",
"could've": "could have",
"couldn't": "could not",
"couldn't've": "could not have",
"didn't": "did not",
"didnt": "did not",
"doesn't": "does not",
"doesnt": "does not",
"don't": "do not",
"dont" : "do not",
"hadn't": "had not",
"hadn't've": "had not have",
"hasn't": "has not",
"haven't": "have not",
"he'd": "he had",
"he'd've": "he would have",
"he'll": "he will",
"he's": "he is",
"how'd": "how did",
"how'd'y": "how do you",
"how'll": "how will",
"how's": "how is",
"i'd": "i had",
"i'd've": "i would have",
"i'll": "i will",
"i'm": "i am",
"im": "i am",
"i've": "i have",
"isn't": "is not",
"it'll": "it will",
"it's": "it is",
"let's": "let us",
"ma'am": "madam",
"mayn't": "may not",
"might've": "might have",
"mightn't": "might not",
"must've": "must have",
"mustn't": "must not",
"mustn't've": "must not have",
"needn't": "need not",
"needn't've": "need not have",
"oughtn't": "ought not",
"oughtn't've": "ought not have",
"shan't": "shall not",
"sha'n't": "shall not",
"shan't've": "shall not have",
"she'd": "she had",
"she'd've": "she would have",
"she'll": "she will",
"she's": "she is",
"should've": "should have",
"shouldn't": "should not",
"shouldn't've": "should not have",
"that's": "that is",
"there's": "there is",
"they'd": "they had",
"they'd've": "they would have",
"they'll": "they will",
"they're": "they are",
"they've": "they have",
"to've": "to have",
"wasn't": "was not",
"we'd": "we had",
"we'd've": "we would have",
"we'll": "we will",
"we'll've": "we will have",
"we're": "we are",
"we've": "we have",
"weren't": "were not",
"what're": "what are",
"what's": "what is",
"what've": "what have",
"when've": "when have",
"where'd": "where did",
"where's": "where is",
"where've": "where have",
"who'll": "who will",
"who's": "who is",
"will've": "will have",
"won't": "will not",
"won't've": "will not have",
"would've": "would have",
"wouldn't": "would not",
"wouldn't've": "would not have",
"y'all": "you all",
"you'll": "you will",
"you're": "you are",
"you've": "you have"
}
contractions_re = re.compile('(%s)' % '|'.join(contractions_dict.keys()))
import tqdm
def expand_contractions(s, contractions_dict=contractions_dict):
def replace(match):
return contractions_dict[match.group(0)]
return contractions_re.sub(replace, s)
def remove_stopwords(text, is_lower_case=False, stopwords=None):
if not stopwords:
stopwords = nltk.corpus.stopwords.words('english')
tokens = nltk.word_tokenize(text)
tokens = [token.strip() for token in tokens]
if is_lower_case:
filtered_tokens = [token for token in tokens if token not in stopwords]
else:
filtered_tokens = [token for token in tokens if token.lower() not in stopwords]
filtered_text = ' '.join(filtered_tokens)
return filtered_text
def pre_process_corpus(docs):
norm_docs = []
for doc in tqdm.tqdm(docs):
doc = strip_html_tags(doc)
doc = doc.translate(doc.maketrans("\n\t\r", " "))
doc = doc.lower()
doc = remove_accented_chars(doc)
doc = expand_contractions(doc)
doc=remove_stopwords(doc)
# lower case and remove special characters\whitespaces
doc = re.sub(r'[^a-zA-Z0-9\s]', '', doc, re.I|re.A)
doc = re.sub(' +', ' ', doc)
doc = doc.strip()
norm_docs.append(doc)
return norm_docs
x= pre_process_corpus(c)
x1=pd.DataFrame(x)
x1.columns=['text']
from nltk.corpus import opinion_lexicon
pos_list=set(opinion_lexicon.positive())
neg_list=set(opinion_lexicon.negative())
from nltk.tokenize import word_tokenize
from nltk.tokenize import sent_tokenize
from nltk.corpus import sentiwordnet as swn
from nltk.sentiment.vader import SentimentIntensityAnalyzer
from afinn import Afinn
##Unsupervised
#using textblob
import textblob
def score(text):
from textblob import TextBlob
return TextBlob(text).sentiment.polarity
def predict(text):
x1['score']=x1['text'].apply(score)
return(x1)
x2=predict(x1)
x2['Sentiment']=['positive' if score >=0 else 'negative' for score in x2['score']]
news_headline= np.array(x2['text'])
sentiments = np.array(x2['Sentiment'])
## Evaluation of performance#cannot be done
afn = Afinn(emoticons = True)
afn.score("I love it")
x_afinn=pd.DataFrame(x)
x_afinn.columns=['text']
def score(text):
from afinn import Afinn
return afn.score(text)
def predict(text):
x_afinn['score']=x_afinn['text'].apply(score)
return(x_afinn)
x1_afinn=predict(x_afinn)
x1_afinn['Sentiment']=['positive' if score >=0 else 'negative' for score in x1_afinn['score']]
#sentiment analyzing using vader model
x_vader=pd.DataFrame(x)
x_vader.columns=['text']
def score(text):
from nltk.sentiment.vader import SentimentIntensityAnalyzer
vader=SentimentIntensityAnalyzer()
return vader.polarity_scores(text)['compound']
def predict(text):
x_vader['score']=x_vader['text'].apply(score)
return(x_vader)
x1_vader=predict(x_vader)
x1_vader['Sentiment']=['positive' if scores>=0 else 'negative' for scores in x1_vader['score']]
##############################################################################################
##################################################
#supervised
#bow-Bag of Words
x3=pd.DataFrame(x)
x3.columns=['text']
d=news_df['news_category']
x3=pd.concat([x3,d],axis=1)
news=x3['text']
category=x3['news_category']
from sklearn.model_selection import train_test_split
x_train1,x_test1,y_train1,y_test1=train_test_split(news,category,test_size=1/3,random_state=42)
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(binary = False, min_df = 5,max_df = 1.0, ngram_range=(1,2))
cv_train_features = cv.fit_transform(x_train1)
cv_test_features = cv.transform(x_test1)
cv_test_features.shape
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(penalty = 'l2',max_iter = 500,C= 1,solver = 'lbfgs')
lr.fit(cv_train_features,y_train1)
lr_predictions = lr.predict(cv_test_features )
lr_predictions
from sklearn.metrics import accuracy_score
accuracy_score(y_test1,lr_predictions)
from sklearn.metrics import confusion_matrix, classification_report
labels = ['negative','positive']
print(classification_report(y_test1,lr_predictions))
confusion_matrix(y_test1,lr_predictions)
#Naive baye's
from sklearn.naive_bayes import GaussianNB
classifier=GaussianNB()
cv_train_features=cv_train_features.toarray()
classifier.fit(cv_train_features,y_train1)
cv_test_features=cv_test_features.toarray()
y_pred=classifier.predict(cv_test_features)
from sklearn.metrics import confusion_matrix, classification_report
cm=confusion_matrix(y_test1,y_pred)
from sklearn.metrics import accuracy_score
accuracy_score(y_test1,y_pred)
#decision tree
from sklearn.tree import DecisionTreeClassifier
classifier=DecisionTreeClassifier(criterion='entropy')
classifier.fit(cv_train_features,y_train1)
y_pred=classifier.predict(cv_test_features)
from sklearn.metrics import confusion_matrix,accuracy_score
confusion_matrix(y_test1,y_pred)
accuracy_score(y_test1,y_pred)
###Supervised
#TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF)
from sklearn.feature_extraction.text import TfidfVectorizer
tv = TfidfVectorizer(use_idf = True,min_df = 5,max_df = 1.0,ngram_range=(1,2))
tv_train_features = tv.fit_transform(x_train1)
tv_test_features = tv.transform(x_test1)
lr.fit(tv_train_features,y_train1)
lr_predictions = lr.predict(tv_test_features)
#logistic regression
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(penalty = 'l2',max_iter = 500,C= 1,solver = 'lbfgs')
lr.fit(tv_train_features,y_train1)
lr_predictions= lr.predict(tv_test_features )
lr_predictions
from sklearn.metrics import accuracy_score
accuracy_score(y_test1,lr_predictions)
from sklearn.metrics import confusion_matrix, classification_report
labels = ['negative','positive']
print(classification_report(y_test1,lr_predictions))
confusion_matrix(y_test1,lr_predictions)
#Naive baye's
from sklearn.naive_bayes import GaussianNB
classifier=GaussianNB()
tv_train_features=tv_train_features.toarray()
classifier.fit(tv_train_features,y_train1)
tv_test_features=tv_test_features.toarray()
y_pred=classifier.predict(tv_test_features)
from sklearn.metrics import confusion_matrix, classification_report
cm=confusion_matrix(y_test1,y_pred)
from sklearn.metrics import accuracy_score
accuracy_score(y_test1,y_pred)
#decision tree
from sklearn.tree import DecisionTreeClassifier
classifier=DecisionTreeClassifier(criterion='entropy')
classifier.fit(tv_train_features,y_train1)
y_pred=classifier.predict(tv_test_features)
from sklearn.metrics import confusion_matrix,accuracy_score
confusion_matrix(y_test1,y_pred)
accuracy_score(y_test1,y_pred)
##############################################################################################
###supervised and unsupervised sentiment classification(mixed together) to predict sentiment
reviews = x1_vader['text']
sentiment = x1_vader['Sentiment']
train_reviews=reviews.iloc[:50]
test_reviews=reviews.iloc[50:]
train_sentiment=sentiment.iloc[:50]
test_sentiment=sentiment.iloc[50:]
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(reviews,sentiment,test_size=1/3,random_state=42)
#supervised Bag of words
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(binary = False, min_df = 5,max_df = 1.0, ngram_range=(1,2))
cv_train_features = cv.fit_transform(x_train)
cv_test_features = cv.transform(x_test)
cv_test_features.shape
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(penalty = 'l2',max_iter = 500,C= 1,solver = 'lbfgs')
lr.fit(cv_train_features,y_train)
lr_predictions = lr.predict(cv_test_features )
lr_predictions
from sklearn.metrics import accuracy_score
accuracy_score(y_test,lr_predictions)
#tfid
from sklearn.feature_extraction.text import TfidfVectorizer
tv = TfidfVectorizer(use_idf = True,min_df = 1,max_df = 5,ngram_range=(1,2))
tv_train_features = tv.fit_transform(x_train)
tv_test_features = tv.transform(x_test)
lr.fit(tv_train_features,y_train)
lr_predictions = lr.predict(tv_test_features)
from sklearn.metrics import accuracy_score
accuracy_score(y_test,lr_predictions)
from sklearn.metrics import confusion_matrix, classification_report
labels = ['negative','positive']
print(classification_report(y_test,lr_predictions))
labels = ['negative','positive']
pd.DataFrame(confusion_matrix(y_test,lr_predictions),index = labels,columns = labels)