-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathview_mnist.py
192 lines (140 loc) · 6.01 KB
/
view_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import math
from tkinter import *
from threading import Thread
from tkinter import filedialog as fd
import numpy as np
import pandas as pd
import neural_network as nn
__pixel_size = 20
__canvas_data = np.zeros(shape=(28, 28), dtype=int)
__canvas_pixels_ids = np.zeros(shape=(28, 28), dtype=int)
__canvas: Canvas = None
__labels_perc = [Label] * 10
def run_gui():
global __pixel_size, __canvas_data, __canvas, __labels_perc
nn.initialize(784, 16, 16, 10, activation_function='relu')
root = Tk()
draw_width = 560
draw_height = 560
root.title("digit recognition")
root.resizable(width=False, height=False)
# FRAME
frame = Frame(root, width=900, height=560, background="gray")
frame.pack()
# CANVAS
__canvas = Canvas(frame, width=draw_width, height=draw_height, bg="white")
__canvas.bind("<B1-Motion>", on_left_mouse_click)
__canvas.bind("<B3-Motion>", on_right_mouse_click)
__canvas.pack(side="left")
# CLEAR BUTTON
clear_button = Button(frame, text="Clear canvas", command=clear_canvas, background='green', height=5, width=15)
clear_button.pack(pady=10, padx=2)
# LABELS
for i in range(len(__labels_perc)):
__labels_perc[i] = Label(frame, text="Probability for " + str(i) + ": None", background="gray")
__labels_perc[i].pack(pady=1)
# NN BUTTONS
save_button = Button(frame, text="Save neural network\nto file", command=show_save_dialog)
save_button.pack(pady=(0, 10), padx=2, side='bottom')
open_button = Button(frame, text="Load neural network\nfrom file", command=show_open_dialog)
open_button.pack(pady=2, padx=2, side='bottom')
init_learning_button = Button(frame, text="Initialize\nmachine learning", command=init_nn_learning_on_new_thread,
background="yellow")
init_learning_button.pack(pady=10, padx=2, side='bottom')
root.mainloop()
def show_open_dialog():
filename = fd.askopenfilename(defaultextension=".xml", filetypes=[("XML Files", "*.xml")])
nn.load_from_xml_file(filename)
def show_save_dialog():
filename = fd\
.asksaveasfile(initialfile='Untitled.xml', defaultextension=".xml", filetypes=[("XML Files", "*.xml")]).name
nn.save_to_xml_file(filename)
def init_nn_learning_on_new_thread():
print("Learning starting...")
Thread(target=init_nn_learning).start()
def load_digit_data(path):
raw_data = pd.read_csv(path)
data = []
for single_row in raw_data.values:
expected = [0 for x in range(10)]
expected[int(single_row[0])] = 1
inputs = [1 if x > 0 else 0 for x in single_row[1:]]
data.append((inputs, expected))
return data
def init_nn_learning():
training_data1 = load_digit_data(
"mnist_data/mnist_train_data1.csv")
training_data2 = load_digit_data(
"mnist_data/mnist_train_data1.csv")
training_data = training_data1 + training_data2
test_data = load_digit_data(
"mnist_data/mnist_test_data.csv")
print("Data loaded")
nn.train_with_mini_batch_gradient_descent(training_data, epoch_amount=30, batch_size=50, expected_max_error=0.01,
learning_rate=0.01)
correct_prediction = 0
for single in test_data:
predictions = nn.predict(single[0])
predicted_num = predictions.index(max(predictions))
expected_num = single[1].index(max(single[1]))
if predicted_num == expected_num:
correct_prediction += 1
perc_correct = 100 * correct_prediction / len(test_data)
print(f"Correctness: {round(perc_correct, 2)}%")
def on_left_mouse_click(event):
x_pos = event.x
y_pos = event.y
index_x = int(np.floor(x_pos / __pixel_size))
index_y = int(np.floor(y_pos / __pixel_size))
update_canvas(index_x, index_y, 1)
Thread(target=on_canvas_data_changed).start()
def on_right_mouse_click(event):
x_pos = event.x
y_pos = event.y
index_x = int(np.floor(x_pos / __pixel_size))
index_y = int(np.floor(y_pos / __pixel_size))
update_canvas(index_x, index_y, 0)
Thread(target=on_canvas_data_changed).start()
def update_canvas(x, y, value):
global __canvas_data, __canvas_pixels_ids
if x > 27 or y > 27:
return
for i in range(-1, 2):
for j in range(-1, 2):
if j + y >= len(__canvas_data) or i + x >= len(__canvas_data[j + y]) or i + x < 0 or j + y < 0:
continue
__canvas_data[j + y][i + x] = value
for i in range(x - 1, x + 2):
for j in range(y - 1, y + 2):
if i < 0 or i > 27 or j < 0 or j > 27:
continue
if value == 1:
fill_col = "gray24"
__canvas.delete(__canvas_pixels_ids[j][i])
__canvas_pixels_ids[j][i] = __canvas.create_rectangle(
i*__pixel_size, j*__pixel_size,
i*__pixel_size + __pixel_size,
j*__pixel_size + __pixel_size, fill=fill_col, outline=fill_col)
else:
fill_col = "white"
__canvas.delete(__canvas_pixels_ids[j][i])
__canvas_pixels_ids[j][i] = __canvas.create_rectangle(
i * __pixel_size, j * __pixel_size,
i * __pixel_size + __pixel_size,
j * __pixel_size + __pixel_size, fill=fill_col, outline=fill_col)
def clear_canvas():
for x in range(0, 28):
for y in range(0, 28):
update_canvas(x, y, 0)
def on_canvas_data_changed():
temp_data = np.reshape(__canvas_data, (__canvas_data.size, 1))
predictions = nn.predict(temp_data)
change_label_perc_text(predictions)
def change_label_perc_text(predictions):
global __labels_perc
index_max = predictions.index(max(predictions))
for i in range(len(predictions)):
bg_col = "gray"
if index_max == i:
bg_col = "green"
__labels_perc[i].config(text="Probability for " + str(i) + ": " + str(np.round(predictions[i]*100, 2)) + "%", background=bg_col)