-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
235 lines (181 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/env python3
# -*- coding: utf-8 -*
from __future__ import print_function
from copy import deepcopy
from model.stack_lstm import ParserBuilder
from model.reward_cal import reward_cal
import dynet as dy
import numpy as np
import model.evaluation as eval
import model.utils as utils
import numpy.random as RNG
import argparse
import model.corpus as corpus
def parsing_options():
parser = argparse.ArgumentParser(description='Training transition-based AMR parser')
parser.add_argument('--emb_file', default='data/sskip.100.vectors', help='path to pre-trained embedding')
parser.add_argument('--train_file', default='data/train.transitions', help='path to training file')
parser.add_argument('--dev_file', default='data/dev.transitions', help='path to development file')
parser.add_argument('--lemma_practs', default='data/train.txt.pb.lemmas', help='lemmas mapped to PR() operations')
parser.add_argument('--model', default='result/pretrain15.model', help='path to save pretrain model')
parser.add_argument('--load_model', type=int, default=-1, help='set to -1 if we do not have pretrained model')
parser.add_argument('--gold_AMR_dev', default='data/amr/tmp_amr/dev/amr.txt', help='Gold AMR graph for calculating SMATCH score during dev')
parser.add_argument('--input_dim', type=int, default=32, help='dimension for word embedding')
parser.add_argument('--action_dim', type=int, default=200, help='dimension for action embedding')
parser.add_argument('--pos_dim', type=int, default=12, help='dimension for pos tag embedding')
parser.add_argument('--rel_dim', type=int, default=20, help='dimension for relation embedding')
parser.add_argument('--pred_dim', type=int, default=100, help='dimension for predicate embedding')
parser.add_argument('--ent_dim', type=int, default=100, help='dimension for entity embedding')
parser.add_argument('--gen_dim', type=int, default=100, help='dimension for generated node embedding')
parser.add_argument('--hidden_dim', type=int, default=200, help='hidden dimension')
parser.add_argument('--lstm_input_dim', type=int, default=100, help='lstm dimension')
parser.add_argument('--pretrain_dim', type=int, default=100, help='pretrained word embedding dimension')
parser.add_argument('--layers', type=int, default=2, help='number of LSTM layers')
parser.add_argument("--reent_max", dest="reent_max", type=int, default=7, help="upper bound of all reentrancy of a graph")
parser.add_argument("--reent_nodes", dest="reent_nodes", type=int, default=2, help="upper bound of the number of reentrancy nodes")
parser.add_argument("--merge_max", dest="merge_max", type=int, default=11, help="upper bound of the number of consecutive merge operations") # For AMR-2014 corpus
parser.add_argument("--gen_max", dest="gen_max", type=int, default=14, help="upper bound of the number of generate operations in a sentence")
parser.add_argument("--forbid_cycle", dest="forbid_cycle", default=True, help="parser forbid actions to form cycles")
parser.add_argument('--drop_out', type=float, default=0.2, help='dropout ratio')
parser.add_argument('--unk_prob', type=float, default=0.2, help='probably with which to replace singletons with UNK in training data')
parser.add_argument('--freq', type=int, default=1000, help='frequence of calculating the Smatch score of the dev set')
parser.add_argument('--best_smatch', type=float, default=0, help='threshold to save the model')
args = parser.parse_args()
return args
def evaluation_dev(corpus, parser, best_SMATCH, e, gold_amr_dev):
print('Evaluation on dev set')
dev_size = corpus.num_sents_dev
score_dic = {}
precision_dic = {}
recall_dic = {}
for dev_id in range(dev_size):
dev_sent_raw = corpus.tokens_dev_raw[dev_id]
dev_sent = corpus.tokens_dev[dev_id]
dev_pos = corpus.pos_dev[dev_id]
dev_sent_string = corpus.tokens_string_dev[dev_id]
tok_lemma_map_dev = corpus.tok_lemma_map_dev[dev_id]
tok_lemma_string = corpus.tok_lemma_string_dev[dev_id]
_, predicted_dev, action_list = parser.parsing(dev_sent_string, dev_sent_raw, dev_sent, dev_pos, tok_lemma_map_dev, 0)
score, precision, recall = reward_cal(predicted_dev, corpus, dev_sent_string, tok_lemma_string, action_list, args.unk_prob, dev_id, gold_amr_dev[dev_id])
score_dic[dev_id] = float(score)
precision_dic[dev_id] = float(precision)
recall_dic[dev_id] = float(recall)
score_dev = sum(score_dic.values()) / dev_size
precision_dev = sum(precision_dic.values()) / dev_size
recall_dev = sum(recall_dic.values()) / dev_size
print("SMATCH score: %.4f, Precision: %.4f, Recall: %.4f" % (score_dev, precision_dev, recall_dev))
if score_dev > best_SMATCH:
print("Saving model epoch{}.model".format(e))
save_as = '%s/epoch%03d.model' % (args.model, e)
parser.save_model(save_as)
def train(corpus, args, parser, gold_amr_dev):
trainer = dy.SimpleSGDTrainer(parser.pc)
instances_processed = 0
order = [i for i in range(corpus.num_sents)]
print("start pretraining the model")
ckt = 0
for epoch_idx in range(20):
RNG.shuffle(order)
words = 0
epoch_loss = 0.0
for si in range(len(order)):
# print("The ith instance: " + str(order[si]))
e = instances_processed // len(order)
train_sent_raw = corpus.tokens_train_raw[order[si]] # For pretrained embedding
train_sent = corpus.tokens_train[order[si]] # For learnt embedding
train_pos = corpus.pos_train[order[si]]
train_gold_acts = corpus.correct_act_train[order[si]]
train_sent_string = corpus.tokens_string_train[order[si]]
tok_lemma_map_train = corpus.tok_lemma_map_train[order[si]]
train_sent_unk = deepcopy(train_sent)
train_gold_acts_unk = deepcopy(train_gold_acts)
if args.unk_prob > 0:
for idx in range(len(train_sent)):
if train_sent[idx] in singletons and np.random.uniform(0, 1) < args.unk_prob:
train_sent_unk[idx] = kUNK
lemma_id = tok_lemma_map_train[idx]
if lemma_id in corpus.lemma_practs_map.keys():
pr_actions = corpus.lemma_practs_map[lemma_id]
token_id = 0
for act_idx in range(len(train_gold_acts)):
if train_gold_acts[act_idx] == corpus.act_dict.string_convert("SS"):
token_id += 1
elif corpus.act_dict.index_convert(train_gold_acts[act_idx])[:3] == "GEN":
if train_gold_acts[act_idx + 1] in pr_actions and token_id == idx:
train_gold_acts_unk[act_idx + 1] = corpus.act_dict.string_convert(corpus.PR_UNK)
break
elif train_gold_acts[act_idx + 2] in pr_actions and token_id == idx:
train_gold_acts_unk[act_idx + 2] = corpus.act_dict.string_convert(corpus.PR_UNK)
break
token_id -= 1
else:
if train_gold_acts[act_idx] in pr_actions and token_id == idx:
train_gold_acts_unk[act_idx] = corpus.act_dict.string_convert(corpus.PR_UNK)
break
# print(train_sent_string)
losses, _, _ = parser.parsing(train_sent_string, train_sent_raw, train_sent_unk, train_pos, tok_lemma_map_train, 0, train_gold_acts_unk)
if losses:
loss = -dy.esum(losses)
if str(loss.scalar_value()) == 'inf':
print(order[si])
print(train_sent_string)
# exit()
epoch_loss += loss.scalar_value()
loss.backward()
trainer.update()
words += len(train_sent)
instances_processed += 1
if e < 10:
if instances_processed % 5000 == 0:
evaluation_dev(corpus, parser, args.best_smatch, ckt, gold_amr_dev)
ckt += 1
elif e >= 10:
if instances_processed % args.freq == 0:
evaluation_dev(corpus, parser, args.best_smatch, ckt, gold_amr_dev)
ckt += 1
if instances_processed % args.freq == 0 and instances_processed != 0:
print('epoch %d: per-word loss: %.6f' % (e, epoch_loss / words))
words = 0
epoch_loss = 0.0
if __name__ == '__main__':
args = parsing_options()
corpus = corpus.Corpus()
gold_amr_dev = eval.get_all_instance(args.gold_AMR_dev)
# gold_amr_train = eval.get_all_instance(args.gold_AMR_train)
root_symbol = "ROOT"
kUNK = corpus.get_or_add_word_train(corpus.UNK)
corpus.get_or_add_word_all(corpus.UNK)
kROOT_SYMBOL = corpus.get_or_add_word_train(root_symbol)
corpus.get_or_add_word_all(root_symbol)
corpus.load_correct_actions(args.train_file)
corpus.load_correct_actions_dev(args.dev_file)
corpus.load_train_preds(args.lemma_practs)
vocab_size_train = corpus.tok_dict_train.get_size() # UNK and ROOT have been added already
vocab_size_pretrain, tok_dict_pretrain, full_vocab = utils.get_dict_pretrain(args.emb_file, corpus)
corpus.load_raw_sent(args.train_file, 'train', tok_dict_pretrain)
corpus.load_raw_sent(args.dev_file, 'dev', tok_dict_pretrain)
assert vocab_size_train == corpus.tok_dict_train.get_size()
assert vocab_size_pretrain == tok_dict_pretrain.get_size()
parser = ParserBuilder(corpus, args.emb_file, tok_dict_pretrain, full_vocab, vocab_size_train, vocab_size_pretrain, args.unk_prob, args.layers, args.pretrain_dim, args.input_dim, args.pos_dim, args.lstm_input_dim, args.hidden_dim, args.action_dim, args.pred_dim, args.rel_dim, args.ent_dim, args.gen_dim, args.drop_out, args.reent_max, args.reent_nodes, args.merge_max, args.gen_max, args.forbid_cycle)
training_vocab = set(corpus.tok_dict_train.get_key_list())
singletons = set()
counts = {}
for _, sent in corpus.tokens_train.items():
for word_idx in sent:
if word_idx in counts.keys():
counts[word_idx] += 1
else:
counts[word_idx] = 1
for word, count in counts.items():
if count == 1:
singletons.add(word)
if args.load_model >= 0:
print("loading pretrained model")
parser.load_model(args.model)
pretrained_model = True
else:
pretrained_model = False
if pretrained_model:
evaluation_dev(corpus, parser, 1, 1, gold_amr_dev)
else:
train(corpus, args, parser, gold_amr_dev)