-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
307 lines (258 loc) · 10.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# -*- coding: utf-8 -*-
import shutil
import os
import argparse
import glob
import random
import time
import torch
from model import Model
from get_mobilev3 import FastDet
from ctdet import CTDetDataset
from loss import CtdetLoss, CtclsLoss
parser = argparse.ArgumentParser()
parser.add_argument('--arch', default='mobilenet', help='FFNet | mobilenet')
parser.add_argument('--num_class', type=int, default=1)
parser.add_argument('--root', default='E:/python/Two-frame-detection/Data')
parser.add_argument('--MODEL_PATH', default='data')
parser.add_argument('--log_path', default='log')
parser.add_argument('--BATCH', type=int, default=16)
parser.add_argument('--EPOCHS', type=int, default=50)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--seed', type=int, default=317)
parser.add_argument('--down_ratio', type=int, default=4)
parser.add_argument('--device', default=torch.device('cuda'))
parser.add_argument('--resume', action='store_true')
parser.add_argument('--hm_weight', type=float, default=1, help='loss weight for keypoint heatmaps.')
parser.add_argument('--wh_weight', type=float, default=0.1, help='loss weight for bounding box size.')
parser.add_argument('--off_weight', type=float, default=1, help='loss weight for keypoint local offsets.')
parser.add_argument('--mask_weight', type=float, default=0.1)
parser.add_argument('--print_freq', type=int, default=50)
parser.add_argument('--flip', type=float, default=0.5, help='probability of applying flip augmentation.')
args = parser.parse_args()
min_loss = float('inf')
def main():
'''
项目的超参
'''
global min_loss, args
# CUDA set
torch.manual_seed(args.seed)
random.seed(args.seed)
# torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
# 获取全量数据
train_samples, val_samples = split_train_val(args.root)
train_len = len(train_samples)
val_len = len(val_samples)
print('train len is %d, val len is %d'%(train_len, val_len))
# Create data
args.train = parse_label(train_samples)
args.val = parse_label(val_samples)
train_loader = torch.utils.data.DataLoader(
CTDetDataset(args, 'train'),
batch_size=args.BATCH,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True
)
val_loader = torch.utils.data.DataLoader(
CTDetDataset(args, 'val'),
batch_size=1,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True
)
# Build network
print('Creating model: {}'.format(args.arch))
if args.arch == 'FFNet':
model = Model(args.num_class)
elif args.arch == 'mobilenet':
checkpoint_path = 'data/mbv3_large.old.pth.tar'
model = FastDet(args.num_class, out_channels=80, output_shape=512 // 4, pretrained=checkpoint_path)
else:
raise ('No Model!!')
# torch.cuda.set_device(1)
model = torch.nn.DataParallel(model, device_ids=[0]).cuda()
# model = model.cuda()
input = torch.zeros([1,3,512,512])
input2 = torch.zeros([1,1,128,128])
output, mask = model(input,input2)
# 判断路径是否存在
if not os.path.exists(args.MODEL_PATH):
os.makedirs(args.MODEL_PATH)
start_epoch = 0
if args.resume:
print('==> Load model from checkpoint..')
checkpoint = torch.load(os.path.join(args.MODEL_PATH, '{}_checkpoint.pth.tar'.format(args.arch)))
model.load_state_dict(checkpoint['state_dict'])
start_epoch = checkpoint['epoch']
args.lr = 0.001
start_epoch = 31
optimizer = torch.optim.Adam(model.parameters(), args.lr)
# optimizer = torch.optim.AdamW(model.parameters(), args.lr)
criterion = CtdetLoss(args)
# criterion = CtclsLoss(args)
time_stample = time.strftime("%Y-%m-%d-%H", time.localtime())
log_name = '{}/{}_{}.txt'.format(args.log_path, args.arch, time_stample)
log = open(log_name, 'a')
for epoch in range(start_epoch, args.EPOCHS):
adjust_learning_rate(optimizer, epoch, args)
train(train_loader, model, criterion, optimizer, epoch, args, log)
# evaluate on validation set
loss = validate(val_loader, model, criterion, args, log)
is_min = loss < min_loss
if is_min:
min_loss = loss
print('\nCurrent loss: %.5f, Minimum loss: %.5f\n' % (loss, min_loss))
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'min_loss': min_loss,
}, is_min)
log.close()
def train(train_loader, model, criterion, optimizer, epoch, args, log):
losses = AverageMeter()
true_top1 = AverageMeter()
# switch to train mode
model.train()
for i, batch in enumerate(train_loader):
for k in batch:
batch[k] = batch[k].to(device=args.device, non_blocking=True)
output, mask = model(batch['input1'], batch['input2'])
# true_prec1 = true_accuracy(output.data, batch['cls'])[0]
# true_top1.update(true_prec1.item(), batch['input'].size(0))
loss, loss_info = criterion(output, mask, batch)
loss = loss.mean()
losses.update(loss)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % args.print_freq == 0:
output = ('epoch: [{0}][{1}]/[{2}]\t lr: {lr:.5f}\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
# 'Top1 {true_top1.val:.4f} ({true_top1.avg:.4f})'
.format(
epoch, i, len(train_loader), loss=losses, lr=optimizer.param_groups[-1]['lr'], true_top1=true_top1
))
log.write(output + '\n')
print(output)
elif i == len(train_loader)-1:
output = ('epoch: [{0}][{1}]/[{2}]\t lr: {lr:.5f}\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
# 'Top1 {true_top1.val:.4f} ({true_top1.avg:.4f})'
.format(
epoch, i, len(train_loader), loss=losses, lr=optimizer.param_groups[-1]['lr'], true_top1=true_top1
))
log.write(output + '\n')
print(output)
def validate(val_loader, model, criterion, args, log):
losses = AverageMeter()
true_top1 = AverageMeter()
# switch to val mode
model.eval()
with torch.no_grad():
for i, batch in enumerate(val_loader):
for k in batch:
batch[k] = batch[k].to(device=args.device, non_blocking=True)
output, mask = model(batch['input1'], batch['input2'])
# true_prec1 = true_accuracy(output.data, batch['cls'])[0]
# true_top1.update(true_prec1.item(), batch['input'].size(0))
loss, loss_info = criterion(output, mask, batch)
loss = loss.mean()
losses.update(loss)
if i % args.print_freq == 0:
output = ('Test: [{0}]/[{1}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
# 'Top1 {true_top1.val:.4f} ({true_top1.avg:.4f})'
.format(
i, len(val_loader), loss=losses, true_top1=true_top1
))
log.write(output + '\n')
print(output)
elif i == len(val_loader)-1:
output = ('Test: [{0}]/[{1}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
# 'Top1 {true_top1.val:.4f} ({true_top1.avg:.4f})'
.format(
i, len(val_loader), loss=losses, true_top1=true_top1
))
log.write(output + '\n')
print(output)
return losses.avg
def adjust_learning_rate(optimizer, epoch, args):
if epoch == 100:
lr = 0.0003
else:
lr = args.lr * (0.1 ** (epoch // 30))
optimizer.param_groups[0]['lr'] = lr
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, '%s/%s_checkpoint.pth.tar' % (args.MODEL_PATH, args.arch))
if is_best:
print('save the best model!!!')
shutil.copyfile('%s/%s_checkpoint.pth.tar' % (args.MODEL_PATH, args.arch),'%s/%s_best.pth.tar' % (args.MODEL_PATH, args.arch))
def true_accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def parse_label(samples):
res = []
for sub_folder in samples:
sub_dict = {}
images = sorted(glob.glob(sub_folder + '/*.jpg'))
sub_dict['image_path'] = images
labels = sorted(glob.glob(sub_folder + '/*.txt'))
sub_labs = []
for lab in labels:
sub_lab = []
with open(lab, 'r') as f:
items = f.readlines()
for item in items:
info = item.strip().split(' ')
info = [int(i) for i in info]
sub_lab.append(info)
sub_labs.append(sub_lab)
sub_dict['label'] = sub_labs
res.append(sub_dict)
return res
def split_train_val(root):
random.seed(42)
neg_folder = 'Neg'
pos_folder = 'Pos'
ratio = 0.95
neg_samples = [os.path.join(root, neg_folder, f) for f in os.listdir(os.path.join(root, neg_folder))]
pos_samples = [os.path.join(root, pos_folder, f) for f in os.listdir(os.path.join(root, pos_folder))]
samples = neg_samples + pos_samples
random.shuffle(samples)
number = len(samples)
node = int(number * ratio)
train_samples = samples[:node]
val_samples = samples[node:]
return train_samples, val_samples
if __name__ == '__main__':
main()