-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_reconstruct_clevr.py
159 lines (120 loc) · 4.81 KB
/
run_reconstruct_clevr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import data
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import random
from dspn import DSPN
from fspool import FSPool
from tensorboardX import SummaryWriter
import matplotlib
import utils
from tqdm import tqdm
from models import *
import argparse
matplotlib.use("Agg")
import matplotlib.pyplot as plt
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', help='model type: srn | mlp', default="srn")
parser.add_argument('--batch_size', type=int, help='batch size', default=32)
parser.add_argument('--lr', type=float, help='lr', default=3e-4)
parser.add_argument('--inner_lr',type=float, help='inner lr', default=8)
parser.add_argument('--save', help='path to save checkpoint', default=None)
parser.add_argument('--resume', help='path to resume a saved checkpoint', default=None)
args = parser.parse_args()
return args
class SSLR(nn.Module):
def __init__(self, lr=8, use_srn=True):
super(SSLR, self).__init__()
self.use_srn = use_srn
element_dims=10
set_size=16
self.g = SetGenCLEVR(element_dims, set_size, lr, use_srn)
self.F_reconstruct = F_reconstruct_CLEVR()
def forward(self, images):
x, inner_losses = self.g(images)
generated_f, generated_set = self.F_reconstruct(x)
return generated_f, inner_losses, generated_set
def eval(net, batch_size, test_loader, epoch, writer, use_srn=True):
with torch.no_grad():
net.eval()
all_loss = 0
rel_error = 0
test_loader = tqdm(
test_loader,
ncols=0,
desc="test E{0:02d}".format(epoch),
)
iters_per_epoch = len(test_loader)
for idx, (images, images_foreground) in enumerate(test_loader, start=epoch * iters_per_epoch):
images, images_foreground = images.cuda(), images_foreground.cuda()
p, inner_losses, gs = net(images)
loss = F.binary_cross_entropy(p, images_foreground)
for j, s_ in enumerate(gs[0]):
fig = plt.figure()
plt.imshow(s_.permute(1,2,0).detach().cpu())
writer.add_figure(f"epoch-{epoch}/img-{idx}", fig, global_step=j)
fig = plt.figure()
plt.imshow(p[0].permute(1,2,0).detach().cpu())
writer.add_figure(f"epoch-{epoch}/img-{idx}", fig, global_step=len(gs[0]))
fig = plt.figure()
plt.imshow(images[0].permute(1,2,0).detach().cpu())
writer.add_figure(f"epoch-{epoch}/img-{idx}-target", fig, global_step=epoch)
all_loss += loss.item()
return all_loss/len(test_loader)
if __name__ == "__main__":
args = get_args()
print(args)
use_srn = args.model_type == "srn"
dataset_train = data.CLEVRMasked(
"clevr", "train", full=True
)
dataset_test = data.CLEVRMasked(
"clevr", "test", full=False
)
batch_size = args.batch_size
train_loader = data.get_loader(
dataset_train, batch_size=batch_size
)
test_loader = data.get_loader(
dataset_test, batch_size=batch_size
)
net = SSLR(args.inner_lr, use_srn).float().cuda()
if args.resume:
net.load_state_dict(torch.load(args.resume))
optimizer = torch.optim.Adam(
[p for p in net.parameters() if p.requires_grad], lr=args.lr
)
writer = SummaryWriter(f"runs/recon_clevr", purge_step=0, flush_secs = 10)
print(type(net))
iters_per_epoch = len(train_loader)
running_loss = 0
for epoch in range(1000+1):
train_loader = tqdm(
train_loader,
ncols=0,
desc="train E{0:02d}".format(epoch),
)
net.train()
running_loss = 0
for idx, (images, images_foreground) in enumerate(train_loader, start=epoch * iters_per_epoch):
images, images_foreground = images.cuda(), images_foreground.cuda()
optimizer.zero_grad()
p, inner_losses, _ = net(images)
loss = F.binary_cross_entropy(p, images_foreground)
writer.add_scalar("train/loss", loss.item(), global_step=idx)
loss.backward()
optimizer.step()
if use_srn:
print(f"inner loss {[l.item()/batch_size for l in inner_losses]}")
print(f"{loss.item()}\n")
running_loss += loss.item()
print(running_loss/len(train_loader))
if args.save:
torch.save(net.state_dict(), args.save)
eval_loss = eval(net, batch_size, test_loader, epoch, writer, use_srn)
print(f"eval: {eval_loss}\n")
writer.add_scalar("eval/loss", eval_loss, global_step=epoch)
writer.flush()
print()