-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_reconstruct_circles.py
140 lines (114 loc) · 4.81 KB
/
run_reconstruct_circles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import data
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import random
from dspn import DSPN
from fspool import FSPool
from tensorboardX import SummaryWriter
import matplotlib
from models import *
import argparse
matplotlib.use("Agg")
import matplotlib.pyplot as plt
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', help='model type: srn | mlp', default="srn")
parser.add_argument('--batch_size', type=int, help='batch size', default=64)
parser.add_argument('--lr', type=float, help='lr', default=3e-4)
parser.add_argument('--inner_lr',type=float, help='inner lr', default=0.1)
parser.add_argument('--inner_iters',type=int, help='# of inner iterations steps to perform', default=10)
parser.add_argument('--start_epoch',type=int, help='epoch to start at', default=0)
parser.add_argument('--load_ckpt', default=False, action='store_true')
args = parser.parse_args()
return args
class SSLR(nn.Module):
def __init__(self, lr=200, num_iters=10, use_srn=True):
super(SSLR, self).__init__()
self.element_dims = 10
self.set_generator = SetGen(element_dims = self.element_dims, set_size=16, lr=lr, use_srn=use_srn, iters=num_iters)
self.f_reconstruct = F_reconstruct(element_dims = self.element_dims)
self.use_srn = use_srn
def forward(self, x, print_interm=False):
x, losses = self.set_generator(x)
generated_f, generated_set = self.f_reconstruct(x)
if self.use_srn:
return generated_f, losses, generated_set
else:
return generated_f, [], generated_set
def eval(net, batch_size, test_loader, epoch, writer, use_srn = True):
net.eval()
all_loss = 0
rel_error = 0
for idx, data in enumerate(test_loader):
images, labels = data
images, labels = images.cuda(), labels.cuda()
if use_srn:
p, inner_losses, gs = net(images)
else:
p = net(images)
loss = F.binary_cross_entropy(p, images)
for j, s_ in enumerate(gs[0]):
fig = plt.figure()
plt.imshow(s_.transpose(0,2).detach().cpu())
writer.add_figure(f"epoch-{epoch}/img-{idx}", fig, global_step=j)
fig = plt.figure()
plt.imshow(p[0].transpose(0,2).detach().cpu())
writer.add_figure(f"epoch-{epoch}/img-{idx}", fig, global_step=len(gs[0]))
fig = plt.figure()
plt.imshow(images[0].transpose(0,2).detach().cpu())
writer.add_figure(f"epoch-{epoch}/img-{idx}-target", fig, global_step=epoch)
all_loss += loss.item()
return all_loss/len(test_loader)
if __name__ == "__main__":
args = get_args()
print(args)
use_srn = args.model_type == "srn"
batch_size = args.batch_size
train_loader = data.get_loader(data.MarkedColorCircles(train=True, size=64000), batch_size = batch_size)
test_loader = data.get_loader(data.MarkedColorCircles(train=False, size=4000), batch_size = batch_size)
use_srn = True
net = SSLR(lr = args.inner_lr, num_iters=args.inner_iters, use_srn=use_srn).float().cuda()
if args.load_ckpt:
net.load_state_dict(torch.load("set_model_recon.pt"))
net.train()
optimizer = torch.optim.Adam(net.parameters(), lr=args.lr)
writer = SummaryWriter(f"recon_run/test_run", purge_step=0, flush_secs = 10)
print(type(net))
print(net.set_generator.decoder.iters)
running_loss = 0
best_loss = 1e50
for epoch in range(args.start_epoch, 1000+1):
if epoch == 20:
net.set_generator.decoder.iters = 20
net.train()
print(f"epoch {epoch}")
running_loss = 0
for idx, data in enumerate(train_loader):
images, labels = data
images, labels = images.cuda(), labels.cuda()
optimizer.zero_grad()
if use_srn:
p, inner_losses, _ = net(images)
else:
p = net(images)
loss = ((images - p)**2).sum()
writer.add_scalar("train/loss", loss.item(), global_step=epoch*len(train_loader) + idx)
loss.backward()
optimizer.step()
if idx % (len(train_loader)//4) == 0:
if use_srn:
print(f"inner loss {[l.item()/batch_size for l in inner_losses]}")
print(loss.item())
running_loss += loss.item()
print(running_loss/len(train_loader))
if epoch % 1 ==0:
eval_loss = eval(net, batch_size, test_loader, epoch, writer, use_srn)
if eval_loss < best_loss:
best_loss = eval_loss
torch.save(net.state_dict(), "set_model_recon.pt")
print(f"eval: {eval_loss}")
writer.add_scalar("eval/loss", eval_loss, global_step=epoch)
writer.flush()
print()