forked from andersonwinkler/PALM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpalm_metrics.m
184 lines (171 loc) · 6.79 KB
/
palm_metrics.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
function varargout = palm_metrics(varargin)
% Compute some permutation metrics:
% - For permutation trees, return the entropies.
% - For sets of permutations, return the average Hamming distance.
%
% Usage:
% [lW,lW0,C] = palm_metrics(Ptree,X,stype)
% [Hamm,HammX,Eucl,EuclX,Spear] = palm_metrics(Pset,X)
%
% Inputs:
% - Ptree : Permutation tree.
% - X : Design matrix (only the EVs of interest for the Freedman-Lane
% and most methods, or the full matrix for ter Braak).
% Note that the metrics are only meaningful if X is the same
% used when Ptree was created originally.
% - stype : Shuffling type. It can be 'perms', 'flips' or 'both'.
% - Pset : Set of shufflings (permutations or sign-flips).
%
% Outputs
% - lW : Log of the max number of permutations with the restrictions
% imposed by the tree and the original design used to create the
% tree.
% - lW0 : Log of the max number of permutations without the restrictions
% imposed by the tree, but with the restrictions imposed by the
% input design X.
% - C : Huberman & Hogg complexity (C) of a given tree.
% For this to give exactly the same result as in the original
% paper, such that it measures the relationships in the tree
% itself, rather than the actual values found in X, the input
% Ptree must have been constructed with X = ones(N,1) (or any
% other constant). However, C doesn't depend on the X that is
% input (i.e., it's not an argument needed to compute C, but
% it's implicitly taken into account through the tree).
% - Hamm : Average Hamming distance across the given permutation set,
% i.e., it's the average change that a permutation cause on
% the original indices.
% - HammX : Same as Hamm, but consider the possibility of repeated
% elements in X. If X isn't supplied, or if X has no ties,
% or if X is the same used originally to create the permutation
% set, Hamm and HammX are the same.
% - Eucl : Same as Hamm, but using the Euclidean distance.
% - EuclX : Same as HammX, but using the Euclidean distance.
% - Spear : Same as Hamm, but using the Spearman correlation. X is always
% taken into account.
%
% _____________________________________
% Anderson M. Winkler
% FMRIB / University of Oxford
% Feb/2014 (updated Oct/2014)
% http://brainder.org
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% PALM -- Permutation Analysis of Linear Models
% Copyright (C) 2015 Anderson M. Winkler
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% Take args and decide what to do
X = [];
if iscell(varargin{1}),
dowhat = 'entropy';
Ptree = varargin{1};
N = numel(palm_permtree(Ptree,1,false,true));
else
dowhat = 'distances';
Pset = varargin{1};
N = size(Pset,1);
end
if nargin == 1,
X = (1:N)';
stype = 'perms';
elseif nargin == 2,
X = varargin{2};
stype = 'perms';
elseif nargin == 3,
X = varargin{2};
stype = varargin{3};
end
if isempty(X),
X = (1:N)';
end
switch dowhat,
case 'entropy',
% Normalised entropy or anisotropy. This is computed
% if the first input is a cell array (Ptree).
% Number of permutations (log) given the data structure.
% It is assumed that Ptree was constructed using the
% same X as input.
lW = palm_maxshuf(Ptree,stype,true);
varargout{1} = lW;
% Number of permutations (log) if there were no data structure:
if nargout > 1,
lfac = palm_factorial(N);
[~,~,S] = unique(X,'rows');
U = unique(S);
nU = numel(U);
if strcmpi(stype,'perms') || strcmpi(stype,'both'),
cnt = zeros(nU,1);
for u = 1:nU,
cnt(u) = sum(S == U(u));
end
plW0 = lfac(N+1) - sum(lfac(cnt+1));
else
plW0 = 0;
end
if strcmpi(stype,'flips') || strcmpi(stype,'both'),
cnt = zeros(nU,1);
for u = 1:nU,
cnt(u) = sum(S == U(u));
end
slW0 = nU*log(2);
else
slW0 = 0;
end
lW0 = plW0 + slW0;
varargout{2} = lW0;
end
% If the user wants, output also the Huberman & Hogg complexity,
% which is computed recursively below
if nargout > 2,
varargout{3} = hhcomplexity(Ptree,1) - 1;
end
case 'distances',
% Average change per permutation, i.e., average
% Hamming distance.
varargout{1} = mean(sum(bsxfun(@ne,Pset(:,1),Pset),1),2);
% Average Euclidean distance per permutation.
varargout{3} = mean(sum(bsxfun(@minus,Pset(:,1),Pset).^2,1).^.5,2);
% For the Hamming and Euclidean, now take ties in X into account.
% Also, compute the Spearman for each case
if strcmpi(stype,'perms'),
XP = X(Pset);
varargout{5} = mean(1-6*sum(bsxfun(@minus,Pset(:,1),Pset).^2,1)/N/(N^2-1),2);
elseif strcmpi(stype,'flips'),
XP = bsxfun(@times,X,Pset);
[~,iXP] = sort(XP);
varargout{5} = mean(1-6*sum(bsxfun(@minus,iXP(:,1),iXP).^2,1)/N/(N^2-1),2);
elseif strcmpi(stype,'both'),
XP = X(abs(Pset));
XP = sign(Pset).*XP;
[~,iXP] = sort(XP);
varargout{5} = mean(1-6*sum(bsxfun(@minus,iXP(:,1),iXP).^2,1)/N/(N^2-1),2);
end
varargout{2} = mean(sum(bsxfun(@ne,XP(:,1),XP),1),2);
varargout{4} = mean(sum(bsxfun(@minus,XP(:,1),XP).^2,1).^.5,2);
end
% ==============================================================
function D = hhcomplexity(Ptree,D)
% Computes recursively the Huberman & Hogg complexity.
% For the 1st iteration, D = 1.
for u = 1:size(Ptree,1),
if isnan(Ptree{u,1}(1)),
k = size(Ptree{u,3},1);
else
k = numel(unique(Ptree{u,1}(:,1)));
end
D = D * (2^k - 1);
if size(Ptree{u,3},2) > 1,
D = hhcomplexity(Ptree{u,3},D);
end
end