forked from andersonwinkler/PALM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpalm_lowrank.m
109 lines (95 loc) · 3.08 KB
/
palm_lowrank.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
function varargout = palm_lowrank(varargin)
% Do various tasks related to lowrank matrix completion.
%
% Usage:
% U = palm_lowrank(G)
% [Grec,mom] = palm_lowrank(G,U,nsel)
% Grec = palm_lowrank(G,U,ysel)
%
% _____________________________________
% Anderson M. Winkler
% FMRIB / University of Oxford
% May/2015
% http://brainder.org
% Note that the basis U is on rowspace. This is so to minimise the number
% of matrix transposes in the code, which can be slow for large matrices.
% Common input for all cases below
G = varargin{1};
[nP,nV] = size(G);
if nargin == 1,
% Compute the basis U. This is to be done at a specific permutation.
% Define the basis. Save some memory by working with
% the smallest possible square of X
if nP >= nV,
[U,SS,~] = svd(G'*G);
s = diag(SS);
tol = nP * eps(max(s));
r = sum(s > tol);
SSr = SS(1:r,1:r);
U = U(:,1:r)';
else
[~,SS,U] = svd(G*G');
s = diag(SS);
tol = nV * eps(max(s));
r = sum(s > tol);
SSr = SS(1:r,1:r);
U = U(:,1:r)'*G;
end
% Outputs
varargout{1} = diag(diag(SSr).^-.5)*U;
elseif nargin == 5,
% With a basis known, reconstruct G.
% Inputs
U = varargin{2}; % basis
nsel = varargin{3}; % number of voxels to use
Gmean = varargin{4}; % ensure outputs are all positive
showprogress = varargin{5};
% Reconstruct the data in the new basis. Use just a subsample.
Grec = zeros(size(G));
if Gmean,
for p = 1:nP,
if showprogress,
fprintf('\t [Reconstructing shuffling %d/%d (variance)]\n',p,nP);
end
idx = randperm(nV);
idx = idx(1:nsel);
Grec(p,:) = (G(p,idx)-Gmean)*pinv(U(:,idx))*U + Gmean;
if min(Grec(p,:)) <= 0,
Gfix = Grec(p,:) <= 0;
Ufix = U;
Ufix(:,Gfix) = -Ufix(:,Gfix);
Grec(p,:) = (G(p,idx)-Gmean)*pinv(Ufix(:,idx))*Ufix + Gmean;
end
end
else
for p = 1:nP,
if showprogress,
fprintf('\t [Reconstructing shuffling %d/%d (mean)]\n',p,nP);
end
idx = randperm(nV);
idx = idx(1:nsel);
Grec(p,:) = G(p,idx)*pinv(U(:,idx))*U;
end
end
varargout{1} = Grec;
elseif nargin == 4,
% With a basis known, reconstruct a single column of G with just a few
% known entries.
% Inputs
U = varargin{2}; % basis
ysel = varargin{3}; % indices of selected tests
Gmean = varargin{4}; % ensure outputs are all positive
% Reconstruct a single permutation with lots of missing values.
if Gmean,
Grec = (G-Gmean)*pinv(U(:,ysel))*U + Gmean;
if min(Grec) <= 0,
Gfix = Grec <= 0;
Ufix = U;
Ufix(:,Gfix) = -Ufix(:,Gfix);
Grec = (G-Gmean)*pinv(Ufix(:,ysel))*Ufix + Gmean;
end
else
Grec = G*pinv(U(:,ysel))*U;
end
varargout{1} = Grec;
end