forked from andersonwinkler/PALM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpalm_help.m
426 lines (325 loc) · 20.8 KB
/
palm_help.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
function varargout = palm_help(varargin)
% Shows a help text. Call palm_help('logo') to show just the logo.
% _____________________________________
% Anderson M. Winkler
% FMRIB / Univ. of Oxford
% Mar/2014
% http://brainder.org
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% PALM -- Permutation Analysis of Linear Models
% Copyright (C) 2015 Anderson M. Winkler
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if nargin == 0 || strcmpi(varargin{1},'basic'),
showlogo;
basic_help;
showdate;
elseif strcmpi(varargin{1},'advanced'),
showlogo;
advanced_help;
showdate;
elseif strcmpi(varargin{1},'logo'),
showlogo;
elseif strcmpi(varargin{1},'date'),
showdate;
elseif strcmpi(varargin{1},'version'),
if nargout == 0,
fprintf(showversion);
else
varargout{1} = showversion;
end
end
% ==============================================================
function basic_help
% Show the most common options.
fprintf('\nThe main options are:\n\n');
fprintf('-i <file> : Input(s). More than one can be specified, each one preceded\n');
fprintf(' by its own -i. All input files must contain the same number of\n');
fprintf(' observations (e.g., the same number of subjects). Except for NPC\n');
fprintf(' and MV, mixing is allowed (e.g., voxelwise, vertexwise and\n');
fprintf(' non-imaging data can be all loaded at once, and later will be all\n');
fprintf(' corrected across) if the option "-corrmod" is used.\n\n');
fprintf('-m <file> : Mask(s). Either one for all inputs, or one per input,\n');
fprintf(' supplied in the same order as the respective -i appear.\n\n');
fprintf('-s <filesurf> [filearea] : The first argument is the surface file\n');
fprintf(' itself. The second is an optional area-per-vertex or area-per-\n');
fprintf(' face file, or simply a number. If only the surface file is\n');
fprintf(' provided, its area is calculated and used for the computation\n');
fprintf(' of spatial statistics (cluster extent and TFCE). If the second\n');
fprintf(' argument is given, it should contain the areas, which are then\n');
fprintf(' used (e.g., average areas from native geometry after areal\n');
fprintf(' interpolation). Alternatively, if the areas are not meaningful\n');
fprintf(' for cluster extent or TFCE, this argument can be simply a number,\n');
fprintf(' such as "1", which is then used as the area of all vertices or\n');
fprintf(' faces.\n\n');
fprintf('-d <file> : Design matrix. It can be in csv format, or in FSL''s vest\n');
fprintf(' format. For information on how to construct the design matrix,\n');
fprintf(' see the FSL GLM manual.\n\n');
fprintf('-t <file> : t-contrasts file, in csv or vest format (the format used by\n');
fprintf(' FSL). The option -t can be used more than once, so that more than\n');
fprintf(' one t-contrasts file can be loaded.\n\n');
fprintf('-f <file> : F-contrasts file, in csv or vest format. The option -f can\n');
fprintf(' be used more than once, so that more than one F-contrasts file\n');
fprintf(' can be loaded. Each file supplied with a -f corresponds to the\n');
fprintf(' file supplied with the option -t in the same order. The option\n');
fprintf(' -f cannot be used more than the number of times the option\n');
fprintf(' -t was used.\n\n');
fprintf('-fonly : Run only the F-contrasts, not the t-contrasts.\n\n');
fprintf('-n <integer> : Number of permutations. Use -n 0 to run all permutations\n');
fprintf(' and/or sign-flips exhaustively. Default is 10000.\n\n');
fprintf('-eb <file> : Exchangeability blocks file, in csv or vest format. If\n');
fprintf(' omitted, all observations are treated as exchangeable and\n');
fprintf(' belonging to a single large exchangeability block.\n\n');
fprintf('-within : If the file supplied with -eb has a single column, this option\n');
fprintf(' runs within-block permutation (default). Can be used with "-whole".\n\n');
fprintf('-whole : If the file supplied with -eb has a single column, this option\n');
fprintf(' runs whole-block permutation. Can be used with "-within".\n\n');
fprintf('-ee : Assume exchangeable errors (EE), to allow permutations.\n\n');
fprintf('-ise : Assume independent and symmetric errors (ISE), to allow\n');
fprintf(' sign-flipping.\n\n');
fprintf('-vg <file> : Variance groups file, in csv or vest format. If omitted,\n');
fprintf(' all observations are assumed to belong to the same variance group\n');
fprintf(' (i.e., the data is treated as homoscedastic. Use "-vg auto" to\n');
fprintf(' define automatically using a structure that is compatible with the\n');
fprintf(' exchangeability blocks (option -eb).\n\n');
fprintf('-npcmethod <method> : Specify the combining function for NPC (Non-\n');
fprintf(' Parametric Combination), which can be one of: Tippett, Fisher,\n');
fprintf(' Pearson-David, Stouffer, Wilkinson <alpha>, Winer, Edgington,\n');
fprintf(' Mudholkar-George, Friston, Darlington-Hayes <r>, Zaykin <alpha>,\n');
fprintf(' Dudbridge-Koeleman <r>, Dudbridge-Koeleman2 <r> <alpha>,\n');
fprintf(' Taylor-Tibshirani or Jiang <alpha>. Default is Fisher. Note that\n');
fprintf(' some methods require 1 or 2 additional parameters to be provided.\n');
fprintf(' All methods except Darlington-Hayes and Jiang can also be used to\n');
fprintf(' produce parametric p-values and spatial statistics.\n\n');
fprintf('-npcmod : Enable NPC over modalities.\n\n');
fprintf('-npccon : Enable NPC over contrasts.\n\n');
fprintf('-npc : Shortcut to "-npcmethod <default method> -npcmod".\n\n');
fprintf('-mv <statistic> <k>: Do classical multivariate analysis (MV), such as\n');
fprintf(' MANOVA and MANCOVA, using the the specified statistic, which can\n');
fprintf(' be one of: Wilks, HotellingTsq, Lawley, Pillai, Roy_ii, Roy_iii,\n');
fprintf(' CCA, or PLS. All but Roy_iii can be used with spatial statistics.\n');
fprintf(' Alternatively, use CCA to do a Canonical Correlation Analysis, or\n');
fprintf(' PLS to do Partial Least Squares regression, with a permutation test\n');
fprintf(' on the indicated k-th canonical correlation (default is 1).\n\n');
fprintf('-pearson : Instead of t, F, v or G, compute either the Pearson"s\n');
fprintf(' correlation coefficient, r (if the constrast has rank = 1), or the\n');
fprintf(' coefficient of determination R^2 (if the constrast has rank > 1).\n');
fprintf(' For the contrasts in which some EVs are zeroed out, this option\n');
fprintf(' computes the multiple correlation coefficient (or R^2)\n');
fprintf(' corresponding to the EVs of interest.\n\n');
fprintf('-T : Enable TFCE inference for univariate (partial) tests, as well as\n');
fprintf(' for NPC and/or MV if these options have been enabled.\n\n');
fprintf('-C <real> : Enable cluster inference for univariate (partial) tests,\n');
fprintf(' with the supplied cluster-forming threshold (supplied as the\n');
fprintf(' equivalent z-score), as well as for NPC and/or MV if these options\n');
fprintf(' have been enabled. Use preferably values >3.\n\n');
fprintf('-Cstat <name> : Choose which cluster statistic should be used. Accepted\n');
fprintf(' statistics are "extent" and "mass" (see the source code for\n');
fprintf(' experimental possibilities).\n\n');
fprintf('-tfce1D : Set TFCE parameters for 1D data (synchronised timeseries)\n');
fprintf(' i.e., H = 2, E = 2, C = 6. Use this option together with -T.\n\n');
fprintf('-tfce2D : Set TFCE parameters for 2D data (surface, TBSS) i.e.,\n');
fprintf(' H = 2, E = 1, C = 26. Use this option together with -T.\n\n');
fprintf('-corrmod : Apply FWER-correction of p-values over multiple modalities.\n\n');
fprintf('-corrcon : Apply FWER-correction of p-values over multiple contrasts.\n');
fprintf(' Because multivariate and F-stats can have different df, this option\n');
fprintf(' automatically enables "-zstat".\n\n');
fprintf('-fdr : Produce FDR-adjusted p-values.\n\n');
fprintf('-o <string> : Output prefix. It may itself be prefixed by a path.\n');
fprintf(' Default is palm.\n\n');
fprintf('-save1-p : Save (1-p) instead of the actual p-values.\n\n');
fprintf('-logp : Save the output p-values as -log(p) (or -log(1-p) if the\n');
fprintf(' option -save1-p is used).\n\n');
fprintf('-demean : Mean center the data, as well as all columns of the design\n');
fprintf(' matrix. If the design has an intercept, the intercept is removed.\n\n');
fprintf('-twotail : Run two-tailed tests for all the t-contrasts instead of\n');
fprintf(' one-tailed. If NPC is used, it naturally becomes two-tailed.\n\n');
fprintf('-concordant : For the NPC, favour alternative hypotheses with\n');
fprintf(' concordant signs. Cannot be used with "-twotail".\n\n');
fprintf('-approx/-accel <method> : Run one of various acceleration methods\n');
fprintf(' available. Legal options for <method> are below. Some may:\n');
fprintf(' accept extra parameters in brackets [ ], that are optional:\n');
fprintf(' "negbin [n]" : Negative binomial, with [n] exceedances\n');
fprintf(' (default n = 2).\n');
fprintf(' "tail [pthr] [out]" : Tail approximation using a GPD for p-values\n');
fprintf(' below pthr (default pthr = 0.10), and excluding\n');
fprintf(' or not the unpermuted case in the null\n');
fprintf(' distribution (default out = false).\n');
fprintf(' "noperm" : Compute permutation p-values without\n');
fprintf(' permutations.\n');
fprintf(' "gamma [out]" : Gamma distribution approximation, excluding\n');
fprintf(' or not the unpermuted case in the null\n');
fprintf(' distribution (default out = false).\n');
fprintf(' "lowrank [val]" : Low rank matrix completion: subsample a\n');
fprintf(' fraction(if val <= 1) or an absolute number\n');
fprintf(' of tests (val > 1) that undergo full testing.\n');
fprintf(' The remainder are computed via low rank matrix\n');
fprintf(' filling. Default val = NaN, such that it''s\n');
fprintf(' computed as N*(N+1)/2, where N is the\n');
fprintf(' number of subjects.\n');
fprintf(' If unsure about which option to use, and if unwilling to read the\n');
fprintf(' full paper, go with "-accel tail", setting a relatively small number\n');
fprintf(' of permutations, such as "-n 500". If using "-nouncorrected", or\n');
fprintf(' if the images are small (or for non-images), this number can\n');
fprintf(' be increased without hitting memory limits.\n\n');
fprintf('-reversemasks : Reverse 0/1 in the masks, so that the zero values\n');
fprintf(' are then used to select the voxels/vertices/faces.\n\n');
fprintf('-quiet : Don''t show progress as the shufflings are performed.\n\n');
fprintf('-advanced : Show advanced options.\n\n');
% ==============================================================
function advanced_help
% Show advanced options.
fprintf('\nThe advanced or less commonly used options are:\n\n');
fprintf('-imiss <file> : Missing data indicators for the input(s).\n\n');
fprintf('-dmiss <file> : Missing data indicators for the design(s).\n\n');
fprintf('-con <file1> [file2] : Contrast file(s) in .mset format. For hypotheses\n');
fprintf(' of the form H0: C''*Psi*D, file1 contains a set of C contrasts, and\n');
fprintf(' file2 (optional) contains a set of D contrasts.\n\n')
fprintf('-tonly : Run only the t-contrasts, not the F-contrasts.\n\n');
fprintf('-cmcp : Ignore the possibility of repeated permutations. This option\n');
fprintf(' will be ignored if the number of shufflings chosen is larger than the\n');
fprintf(' maximum number of possible shufflings, in which case all possible\n');
fprintf(' shufflings will be performed.\n\n');
fprintf('-cmcx : Ignore the possibility of repeated rows in X when\n');
fprintf(' constructing the set of permutations, such that each row is\n');
fprintf(' treated as unique, regardless of potential repetitions (ties).\n\n');
fprintf('-conskipcount <integer> : Normally the contrasts are numbered from 1, but\n');
fprintf(' this option allows staring the counter from the specified number.\n');
fprintf(' This option doesn"t affect which contrasts are performed.\n\n');
fprintf('-Cuni <real> : Enable cluster statistics for t contrasts for univariate\n');
fprintf(' (partial) tests, with the supplied cluster-forming threshold (as\n');
fprintf(' a z-score).\n\n');
fprintf('-Cnpc <real> : Enable cluster statistics for t contrasts for NPC, with the\n');
fprintf(' supplied cluster-forming threshold (as a z-score).\n\n');
fprintf('-Cmv <real> : Enable cluster statistics for t contrasts for MV, with the\n');
fprintf(' supplied cluster-forming threshold (as a z-score).\n\n');
fprintf('-designperinput : Use one design file for each input modality.\n\n');
fprintf('-ev4vg : Add to the design one EV modelling the mean of each VG.\n\n');
fprintf('-evperdat : Treat the design matrix supplied with -d as having one column\n');
fprintf(' for each column in the observed data (entered with -i). This\n');
fprintf(' enables voxelwise/facewise/vertexwise regressors.\n\n');
fprintf('-forceintersectionmask : Force the use of an intersection mask across\n');
fprintf(' inputs and pointwise EVs, even if not using NPC or MV.\n\n');
fprintf('-inormal : Apply an inverse-normal transformation to the data.\n');
fprintf(' This procedure can go faster if the data is known to be quantitative\n');
fprintf(' (in which case, use "-inormal quanti"). There are four different\n');
fprintf(' methods available, which can be specified as "-inormal <method>" or\n');
fprintf(' "-inormal quanti <method>". The methods are "Waerden" (default),\n');
fprintf(' "Blom", "Tukey" and "Bliss".\n\n');
fprintf('-probit : Apply a probit transformation to the data.\n\n');
fprintf('-inputmv : Treat the (sole) input as multivariate, that is, each column\n');
fprintf(' is a variable in a multivariate model, as opposed to independent\n');
fprintf(' univariate tests. Useful with non-imaging data. When used, the\n');
fprintf(' option "-nounivariate" is automatically set.\n\n');
fprintf('-mcar : Assume that data is missing completely at random.\n\n');
fprintf('-noniiclass : Do not use the NIFTI class (use this option only if you\n');
fprintf(' have problems and even so, only for small datasets).\n\n');
fprintf('-precision <string> : Precision ("single" or "double") for input files.\n\n');
fprintf('-noranktest : Don''t test whether the space spanned by effects of interest\n');
fprintf(' overlaps with the space spanned by nuisance.\n');
fprintf(' For multivariate tests (-mv), don''t check the rank of the data before\n');
fprintf(' trying to compute the statistics.\n\n');
fprintf('-nounivariate : Don''t save univariate results.\n\n');
fprintf('-nouncorrected : Don''t save uncorrected p-values.\n\n');
fprintf('-saveuncorrected : Save uncorrected p-values if an earlier option disabled it.\n\n');
fprintf('-pmethodp : Partition method used when defining the set of permutations.\n');
fprintf(' Can be "Guttman", "Beckmann", "Ridgway" or "None".\n');
fprintf(' Default is "Guttman"\n\n');
fprintf('-pmethodr : Partition method used during the regression. Valid values\n');
fprintf(' are "Guttman", "Beckmann", "Ridgway" or "None".\n');
fprintf(' Default is "Ridgway"\n\n');
fprintf('-removevgbysize <integer> : Remove from the data and design those\n');
fprintf(' observations that are in VGs of size smaller or equal than specified.\n');
fprintf(' This is specially useful with the option "-vg auto".\n\n')
fprintf('-rmethod <string> : Method for regression/permutation. It can be one of\n');
fprintf(' Freedman-Lane, Dekker, terBraak, Manly, Draper-Stoneman,\n');
fprintf(' Still-White and Huh-Jhun. Default, and recommended, is\n');
fprintf(' Freedman-Lane.\n\n');
fprintf('-savedof : Save file with degrees of freedom.\n\n');
fprintf('-savemask : Save the effective masks used for each modality, as well as\n');
fprintf(' an intersection mask used for NPC and/or MV of these have been\n');
fprintf(' selected.\n\n');
fprintf('-savemetrics : Save a csv file with various permutation metrics.\n\n');
fprintf('-saveparametric : Save also uncorrected parametric p-values. These are only\n');
fprintf(' valid if all assumptions are met, including iid and normality.\n\n');
fprintf('-saveglm : Save COPEs, VARCOPEs, and Cohen''s d in the first permutation\n');
fprintf(' for the contrasts that have rank = 1.\n\n');
fprintf('-saveperms : Save one statistic image per permutation, as well as a csv\n');
fprintf(' file with the permutation indices (one permutation per row, one\n');
fprintf(' index per column; sign-flips are represented by the negative\n');
fprintf(' indices). Use cautiously, as this may consume large amounts of\n');
fprintf(' disk space.\n\n');
fprintf('-savemax : Save distribution of maximum statistic.\n\n');
fprintf('-seed <positive> : Seed used for the random number generator. Use a\n');
fprintf(' positive integer up to 2^32. Default is 0. To start with a random\n');
fprintf(' number, use the word "twist" instead of the integer. Note that a\n');
fprintf(' given seed used in Matlab isn''t equivalent to the same seed used\n');
fprintf(' in Octave.\n\n');
fprintf('-syncperms : If possible, use synchronized permutations even they wouldn''t\n');
fprintf(' be used by default.\n\n');
fprintf('-subjidx <file> : Indices of input data to keep in the design.\n\n');
fprintf('-Tuni : Enable TFCE inference for univariate (partial) tests.\n\n');
fprintf('-Tnpc : Enable TFCE inference for NPC.\n\n');
fprintf('-Tmv : Enable TFCE inference for MV.\n\n');
fprintf('-tfce_H <real> : Set the TFCE H parameter (height power).\n\n');
fprintf('-tfce_E <real> : Set the TFCE E parameter (extent power).\n\n');
fprintf('-tfce_C <integer> : Set the TFCE C parameter (connectivity).\n\n');
fprintf('-tfce_dh <real> : Set the "delta h" for the calculation of TFCE.\n');
fprintf(' Default is "auto".\n\n');
fprintf('-tableasvolume : Treat tables (e.g., CSV inputs) as volumes, such\n');
fprintf(' that TFCE can be calculated. This is useful for TFCE over timeseries.\n\n');
fprintf('-transposedata : For input data (-i) that are csv tables (2D), transpose\n');
fprintf(' rows and columns.\n\n');
fprintf('-verbosefilenames : Use lengthy filenames, even if the numbering go up\n');
fprintf(' to 1 only.\n\n');
fprintf('-vgdemean : Mean center the data, as well as all columns of the design\n');
fprintf(' matrix, within each VG. Intercepts are removed.\n\n');
fprintf('-zstat : Convert the original statistic (t, F, v, G, r, R2, or any of\n');
fprintf(' the MV statistics) to a normally distributed, z-statistic.\n\n');
% ==============================================================
function showlogo
% Show the logo
fprintf('=======================================================================\n');
fprintf(' ___ ___ ___\n');
fprintf(' / /\\ / /\\ /__/\\\n');
fprintf(' / /::\\ / /::\\ | |::\\\n');
fprintf(' / /:/\\:\\ / /:/\\:\\ ___ ___ | |:|:\\\n');
fprintf(' / /:/~/:/ / /:/~/::\\ /__/\\ / /\\ __|__|:|\\:\\\n');
fprintf(' /__/:/ /:/ /__/:/ /:/\\:\\ \\ \\:\\ / /:/ /__/::::| \\:\\\n');
fprintf(' \\ \\:\\/:/ \\ \\:\\/:/__\\/ \\ \\:\\ /:/ \\ \\:\\~~\\__\\/\n');
fprintf(' \\ \\::/ \\ \\::/ \\ \\:\\/:/ \\ \\:\\\n');
fprintf(' \\ \\:\\ \\ \\:\\ \\ \\::/ \\ \\:\\\n');
fprintf(' \\ \\:\\ \\ \\:\\ \\__\\/ \\ \\:\\\n');
fprintf(' \\__\\/ \\__\\/ \\__\\/\n');
fprintf('\n');
fprintf('=======================================================================\n');
fprintf(' Permutation Analysis of Linear Models\n');
fprintf('=======================================================================\n');
% ==============================================================
function showdate
% Show the date
fprintf('_____________________________________\n');
fprintf('Anderson M. Winkler\n');
fprintf('FMRIB / University of Oxford\n');
fprintf('%s',showversion);
fprintf('http://www.fmrib.ox.ac.uk/fsl\n');
function vstr = showversion
% Read the file with the version
fid = fopen(fullfile(fileparts(mfilename('fullpath')),'palm_version.txt'),'r');
vstr = textscan(fid,'%s');
fclose(fid);
% Assemble back as a string
vstr = sprintf('%s ',vstr{1}{:});
vstr = sprintf('%s\n',vstr(1:end-1));