-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathgradio_cama-demo.py
216 lines (184 loc) · 6.48 KB
/
gradio_cama-demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from peft import PeftModel
from transformers import LlamaForCausalLM, LlamaTokenizer, GenerationConfig
import torch
import sys
import gradio as gr
import argparse
import os
import mdtex2html
from scripts.callbacks import Iteratorize, Stream
# from examples.prompter import Prompter
import transformers
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '7'
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
def reset_user_input():
return gr.update(value='')
def reset_state():
return [], []
def generate_prompt(instruction):
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response: """
gr.Chatbot.postprocess = postprocess
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except: # noqa: E722
pass
base_model: str = "cama-path"
lora_weights: str = "lora-path"
load_8bit = False
# prompter = Prompter(prompt_template)
tokenizer = LlamaTokenizer.from_pretrained(base_model)
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
)
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # pad
model.config.bos_token_id = tokenizer.pad_token_id = 1
model.config.eos_token_id = tokenizer.pad_token_id = 2
if not load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
max_memory=512
def evaluate(
chatbot,
instruction,
# input=None,
temperature=0.4,
top_p=0.75,
top_k=40,
num_beams=2,
max_new_tokens=512,
repetition_penalty=1.3,
stream_output=False,
history=None,
**kwargs,
):
now_input = instruction
chatbot.append((instruction, ""))
history = history or []
if len(history) != 0:
instruction = "".join(["### Instruction:\n" + i[0] +"\n\n" + "### Response: " + i[1] + "\n\n" for i in history]) + \
"### Instruction:\n" + instruction
instruction = instruction[len("### Instruction:\n"):]
if len(instruction) > max_memory:
instruction = instruction[-max_memory:]
prompt = generate_prompt(instruction)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
**kwargs,
)
# Without streaming
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
# output = prompter.get_response(output)
output = output.split("### Response:")[-1].strip()
history.append((now_input, output))
chatbot[-1] = (now_input, output)
# return chatbot, history
# yield prompter.get_response(output)
yield chatbot, history
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">CaMA0601 - training - 3600steps </h1>""")
current_file_path = os.path.abspath(os.path.dirname(__file__))
# gr.Image(f'{current_file_path}/../pics/banner.png', label = 'Chinese LLaMA & Alpaca LLM')
gr.Markdown("> 启真医学大模型")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
temperature = gr.components.Slider(
minimum=0, maximum=1, value=0.4, label="Temperature"
)
top_p = gr.components.Slider(
minimum=0, maximum=1, value=0.75, label="Top p"
)
top_k = gr.components.Slider(
minimum=0, maximum=100, step=1, value=40, label="Top k"
)
num_beams = gr.components.Slider(
minimum=1, maximum=4, step=1, value=2, label="Beams"
)
max_new_tokens = gr.components.Slider(
minimum=1, maximum=2000, step=1, value=512, label="Max tokens"
)
repetition_penalty = gr.components.Slider(
minimum=1, maximum=2, step=0.1, value=1.3, label="Repetition Penalty"
)
stream_output = gr.components.Checkbox(label="Stream output")
history = gr.State([]) # (message, bot_message)
submitBtn.click(evaluate, [chatbot, user_input, temperature, top_p, top_k, num_beams, max_new_tokens, repetition_penalty, stream_output, history],[chatbot, history],
show_progress=True)
# submitBtn.click(predict, [user_input, chatbot, history, max_length, top_p, temperature], [chatbot, history],
# show_progress=True)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
demo.queue().launch(share=False, inbrowser=True,
server_name='0.0.0.0', server_port=16666)