-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
249 lines (232 loc) · 12.5 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# encoding:utf-8
import sys
import time
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import pickle
import argparse
import logging
from dataset import Dataset
from model import Model
from utils import *
import pprint
from tensorboardX import SummaryWriter
def parse_args():
"""
Parses command line arguments.
"""
parser = argparse.ArgumentParser('GraphCM')
parser.add_argument('--train', action='store_true',
help='train the model')
parser.add_argument('--valid', action='store_true',
help='perform click prediction task on valid set')
parser.add_argument('--test', action='store_true',
help='perform click prediction task on test set')
parser.add_argument('--rank', action='store_true',
help='perform relevance estimation task on human labeled test set')
parser.add_argument('--num_iter', type=int, default=1,
help='the number of duplicated evaluation for valid/test/rank')
train_settings = parser.add_argument_group('train settings')
train_settings.add_argument('--optim', default='adadelta',
help='optimizer type')
train_settings.add_argument('--learning_rate', type=float, default=0.01,
help='learning rate')
train_settings.add_argument('--weight_decay', type=float, default=1e-5,
help='weight decay')
train_settings.add_argument('--momentum', type=float, default=0.99,
help='momentum')
train_settings.add_argument('--dropout_rate', type=float, default=0.5,
help='dropout rate')
train_settings.add_argument('--batch_size', type=int, default=64,
help='train batch size')
train_settings.add_argument('--num_steps', type=int, default=20000,
help='number of training steps')
train_settings.add_argument('--reg_relevance', type=float, default=1.0,
help='regularization for relevance training')
model_settings = parser.add_argument_group('model settings')
model_settings.add_argument('--algo', default='GraphCM',
help='choose the algorithm to use')
model_settings.add_argument('--combine', default='mul',
help='the combination type for examination and relevance')
model_settings.add_argument('--embed_size', type=int, default=64,
help='size of the query/doc embeddings')
model_settings.add_argument('--pos_embed_size', type=int, default=4,
help='size of the position embeddings')
model_settings.add_argument('--click_embed_size', type=int, default=4,
help='size of the click embeddings')
model_settings.add_argument('--vtype_embed_size', type=int, default=8,
help='size of the vtype embeddings')
model_settings.add_argument('--hidden_size', type=int, default=128,
help='size of RNN hidden units')
model_settings.add_argument('--max_d_num', type=int, default=10,
help='max number of docs in a session')
model_settings.add_argument('--use_pretrain_embed', action='store_true',
help='whether use pretrained embeddings')
model_settings.add_argument('--use_gnn', action='store_true',
help='whether use gnn layer')
model_settings.add_argument('--gnn_neigh_sample', type=int, default=5,
help='the number of neighbors to be sampled for GAT')
model_settings.add_argument('--gnn_att_heads', type=int, default=2,
help='the number of multi-head attention for GAT')
model_settings.add_argument('--gnn_dropout', type=int, default=0,
help='the dropout for the gat layer')
model_settings.add_argument('--gnn_leaky_slope', type=float, default=0.2,
help='leaky slope of leakyrelu for gat layer')
model_settings.add_argument('--gnn_concat', type=bool, default=False,
help='whether perform concatenation in gat layer')
model_settings.add_argument('--inter_neigh_sample', type=int, default=0,
help='the number of neighbor to be sampled for interaction')
model_settings.add_argument('--inter_leaky_slope', type=float, default=0.2,
help='leaky slope of leakyrelu for interaction')
path_settings = parser.add_argument_group('path settings')
path_settings.add_argument('--dataset', default='TianGong-ST',
help='name of the dataset to be used')
path_settings.add_argument('--model_dir', default='./outputs/models/',
help='the dir to store models')
path_settings.add_argument('--result_dir', default='./outputs/results/',
help='the dir to output the results')
path_settings.add_argument('--summary_dir', default='./outputs/summary/',
help='the dir to write tensorboard summary')
path_settings.add_argument('--log_dir', default='./outputs/log/',
help='path of the log file. If not set, logs are printed to console')
path_settings.add_argument('--eval_freq', type=int, default=100,
help='the frequency of evaluating on the valid set when training')
path_settings.add_argument('--check_point', type=int, default=100,
help='the frequency of saving model')
path_settings.add_argument('--patience', type=int, default=5,
help='lr decay when more than the patience times of evaluation where loss/ppl do not decrease')
path_settings.add_argument('--lr_decay', type=float, default=0.5,
help='lr decay')
path_settings.add_argument('--load_model', type=int, default=-1,
help='load model global step')
path_settings.add_argument('--data_parallel', type=bool, default=False,
help='data_parallel')
path_settings.add_argument('--gpu_num', type=int, default=1,
help='gpu_num')
return parser.parse_args()
def train(args, dataset):
"""
trains the model
"""
logger = logging.getLogger("GraphCM")
logger.info('Initialize the model...')
model = Model(args, dataset.query_size, dataset.doc_size, dataset.vtype_size, dataset)
logger.info('model.global_step: {}'.format(model.global_step))
if args.load_model > -1:
logger.info('Reloading the model...')
model.load_model(model_dir=args.model_dir, model_prefix=args.algo, global_step=args.load_model)
logger.info('Training the model...')
model.train(dataset)
logger.info('Done with model training!')
def valid(args, dataset):
"""
compute perplexity and log-likelihood for valid file
"""
logger = logging.getLogger("GraphCM")
logger.info('Initialize the model...')
model = Model(args, dataset.query_size, dataset.doc_size, dataset.vtype_size, dataset)
logger.info('model.global_step: {}'.format(model.global_step))
assert args.load_model > -1, 'args.load_model is required to specify the model file to be loaded!'
logger.info('Reloading the model...')
model.load_model(model_dir=args.model_dir, model_prefix=args.algo, global_step=args.load_model)
logger.info('Evaluating the model on valid set...')
summary_writer = SummaryWriter(args.summary_dir)
sum_click_loss, sum_perplexity = 0.0, 0.0
for i in range(args.num_iter):
valid_batches = dataset.gen_mini_batches('valid', dataset.validset_size, shuffle=False)
valid_click_loss, valid_rel_loss, perplexity = model.evaluate(valid_batches, dataset)
sum_click_loss += valid_click_loss
sum_perplexity += perplexity
summary_writer.add_scalar('final_valid/avg_click_loss', sum_click_loss / (i + 1), i)
summary_writer.add_scalar('final_valid/avg_perplexity', sum_perplexity / (i + 1), i)
summary_writer.add_scalar('final_valid/click_loss', valid_click_loss, i)
summary_writer.add_scalar('final_valid/perplexity', perplexity, i)
def test(args, dataset):
"""
compute perplexity and log-likelihood for test file
"""
logger = logging.getLogger("GraphCM")
logger.info('Initialize the model...')
model = Model(args, dataset.query_size, dataset.doc_size, dataset.vtype_size, dataset)
logger.info('model.global_step: {}'.format(model.global_step))
assert args.load_model > -1, 'args.load_model is required to specify the model file to be loaded!'
logger.info('Reloading the model...')
model.load_model(model_dir=args.model_dir, model_prefix=args.algo, global_step=args.load_model)
logger.info('Predict on test files...')
summary_writer = SummaryWriter(args.summary_dir)
sum_click_loss, sum_perplexity = 0.0, 0.0
for i in range(args.num_iter):
test_batches = dataset.gen_mini_batches('test', dataset.testset_size, shuffle=False)
test_click_loss, test_rel_loss, perplexity = model.evaluate(test_batches, dataset)
sum_click_loss += test_click_loss
sum_perplexity += perplexity
summary_writer.add_scalar('final_test/avg_click_loss', sum_click_loss / (i + 1), i)
summary_writer.add_scalar('final_test/avg_perplexity', sum_perplexity / (i + 1), i)
summary_writer.add_scalar('final_test/click_loss', test_click_loss, i)
summary_writer.add_scalar('final_test/perplexity', perplexity, i)
def rank(args, dataset):
"""
ranking performance on test files
"""
logger = logging.getLogger("GraphCM")
logger.info('Initialize the model...')
model = Model(args, dataset.query_size, dataset.doc_size, dataset.vtype_size, dataset)
logger.info('model.global_step: {}'.format(model.global_step))
assert args.load_model > -1, 'args.load_model is required to specify the model file to be loaded!'
logger.info('Reloading the model...')
model.load_model(model_dir=args.model_dir, model_prefix=args.algo, global_step=args.load_model)
logger.info('Start computing NDCG@k for ranking performance')
trunc_levels = [1, 3, 5, 10]
sum_ndcgs = {trunc_level: 0.0 for trunc_level in trunc_levels}
summary_writer = SummaryWriter(args.summary_dir)
for i in range(args.num_iter):
label_batches = dataset.gen_mini_batches('label', dataset.labelset_size, shuffle=False)
ndcgs = model.ranking(label_batches, dataset)
for trunc_level in trunc_levels:
sum_ndcgs[trunc_level] += ndcgs[trunc_level]
summary_writer.add_scalar('final_NDCG/avg_{}'.format(trunc_level), sum_ndcgs[trunc_level] / (i + 1), i)
summary_writer.add_scalar('final_NDCG/{}'.format(trunc_level), ndcgs[trunc_level], i)
def run():
"""
Prepares and runs the whole system.
"""
# get arguments
args = parse_args()
assert args.batch_size % args.gpu_num == 0
assert args.hidden_size % 2 == 0
# create a logger
logger = logging.getLogger("GraphCM")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(message)s')
check_path(args.model_dir)
check_path(args.result_dir)
check_path(args.summary_dir)
if args.log_dir:
check_path(args.log_dir)
file_handler = logging.FileHandler(args.log_dir + time.strftime('%Y-%m-%d-%H:%M:%S',time.localtime(time.time())) + '.txt')
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
else:
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
logger.info('Running with args : {}'.format(args))
logger.info('Checking the directories...')
for dir_path in [args.model_dir, args.result_dir, args.summary_dir]:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
logger.info('Loading train/valid/test/label/graph data...')
dataset = Dataset(args)
if args.train:
train(args, dataset)
if args.valid:
valid(args, dataset)
if args.test:
test(args, dataset)
if args.rank:
rank(args, dataset)
logger.info('run done.')
if __name__ == '__main__':
run()