-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
261 lines (231 loc) · 13 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import logging
import numpy as np
import torch
import math
import random
from torch.autograd import Variable
from tqdm import tqdm
from tensorboardX import SummaryWriter
from torch import nn
from utils import *
from GraphCM import GraphCM
import torch.nn.utils.rnn as rnn_utils
use_cuda = torch.cuda.is_available()
device = torch.device('cuda') if use_cuda else torch.device('cpu')
MINF = 1e-30
class Model(object):
def __init__(self, args, query_size, doc_size, vtype_size, dataset):
# Config Setup
self.args = args
self.logger = logging.getLogger("GraphCM")
self.hidden_size = args.hidden_size
self.optim_type = args.optim
self.learning_rate = args.learning_rate
self.weight_decay = args.weight_decay
self.eval_freq = args.eval_freq
self.global_step = args.load_model if args.load_model > -1 else 0
self.patience = args.patience
self.max_d_num = args.max_d_num
self.writer = None
if args.train:
self.writer = SummaryWriter(self.args.summary_dir)
# GraphCM
self.model = GraphCM(args, query_size, doc_size, vtype_size, dataset)
if args.data_parallel:
self.model = nn.DataParallel(self.model)
if use_cuda:
self.model = self.model.cuda()
self.optimizer = self.create_train_op()
self.loss_criterion = nn.BCELoss(reduction='none')
# NDCG Truncation Levels
self.trunc_levels = [1, 3, 5, 10]
def compute_click_loss(self, pred_logits, TRUE_CLICKS, MASK):
"""
The click loss function
"""
losses = self.loss_criterion(pred_logits, TRUE_CLICKS)
losses = torch.masked_select(losses, MASK)
loss = torch.mean(losses)
return loss
def compute_perplexity(self, pred_logits, TRUE_CLICKS, MASK):
'''
Compute the perplexity
'''
session_num = pred_logits.shape[1] // 10
pos_logits = torch.log2(pred_logits + MINF)
neg_logits = torch.log2(1. - pred_logits + MINF)
perplexity_at_rank = torch.where(TRUE_CLICKS == 1, pos_logits, neg_logits)
perplexity_at_rank = torch.where(MASK == True, perplexity_at_rank, torch.zeros(perplexity_at_rank.shape, device=device))
for session_idx in range(1, session_num):
perplexity_at_rank[:, :10] += perplexity_at_rank[:, 10 * session_idx:10 * session_idx + 10]
perplexity_at_rank = perplexity_at_rank[:, :10].sum(dim=0)
return perplexity_at_rank
def create_train_op(self):
"""
Selects the training algorithm and creates a train operation with it
"""
if self.optim_type == 'adagrad':
optimizer = torch.optim.Adagrad(self.model.parameters(), lr=self.learning_rate, weight_decay=self.args.weight_decay)
elif self.optim_type == 'adadelta':
optimizer = torch.optim.Adadelta(self.model.parameters(), lr=self.learning_rate, weight_decay=self.args.weight_decay)
elif self.optim_type == 'adam':
optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate, weight_decay=self.args.weight_decay)
elif self.optim_type == 'rprop':
optimizer = torch.optim.RMSprop(self.model.parameters(), lr=self.learning_rate, weight_decay=self.args.weight_decay)
elif self.optim_type == 'sgd':
optimizer = torch.optim.SGD(self.model.parameters(), lr=self.learning_rate, momentum=self.args.momentum,
weight_decay=self.args.weight_decay)
else:
raise NotImplementedError('Unsupported optimizer: {}'.format(self.optim_type))
return optimizer
def adjust_learning_rate(self, decay_rate=0.5):
for param_group in self.optimizer.param_groups:
param_group['lr'] = param_group['lr'] * decay_rate
def _train_epoch(self, train_batches, dataset, metric_save, patience, step_pbar):
evaluate = True
exit_tag = False
num_steps = self.args.num_steps
check_point, batch_size = self.args.check_point, self.args.batch_size
save_dir, save_prefix = self.args.model_dir, self.args.algo
for b_idx, batch in enumerate(train_batches):
self.global_step += 1
step_pbar.update(1)
# Create TRUE_CLICKS & MASK tensor
TRUE_CLICKS = rnn_utils.pad_sequence([torch.from_numpy(np.array(true_click, dtype=np.float32)) for true_click in batch['true_clicks']], batch_first=True)
MASK = rnn_utils.pad_sequence([torch.ones(len(true_click)) for true_click in batch['true_clicks']], batch_first=True)
MASK = (MASK == 1)
query_num = MASK.sum() // 10
if use_cuda:
TRUE_CLICKS, MASK = TRUE_CLICKS.cuda(), MASK.cuda()
self.model.train()
self.optimizer.zero_grad()
pred_logits, pred_rels = self.model(batch['qids'], batch['uids'], batch['vids'], batch['clicks'])
loss = self.compute_click_loss(pred_logits, TRUE_CLICKS, MASK)
loss.backward()
self.optimizer.step()
self.writer.add_scalar('train/loss', loss, self.global_step)
if evaluate and self.global_step % self.eval_freq == 0:
valid_batches = dataset.gen_mini_batches('valid', dataset.validset_size, shuffle=False)
valid_click_loss, valid_rel_loss, valid_perplexity = self.evaluate(valid_batches, dataset)
torch.cuda.empty_cache()
self.writer.add_scalar("valid/click_loss", valid_click_loss, self.global_step)
self.writer.add_scalar("valid/perplexity", valid_perplexity, self.global_step)
test_batches = dataset.gen_mini_batches('test', dataset.testset_size, shuffle=False)
test_click_loss, test_rel_loss, test_perplexity = self.evaluate(test_batches, dataset)
torch.cuda.empty_cache()
self.writer.add_scalar("test/click_loss", test_click_loss, self.global_step)
self.writer.add_scalar("test/perplexity", test_perplexity, self.global_step)
label_batches = dataset.gen_mini_batches('label', dataset.labelset_size, shuffle=False)
ndcgs = self.ranking(label_batches, dataset)
torch.cuda.empty_cache()
for trunc_level in self.trunc_levels:
self.writer.add_scalar("rank/{}".format(trunc_level), ndcgs[trunc_level], self.global_step)
if valid_perplexity < metric_save:
metric_save = valid_perplexity
patience = 0
else:
patience += 1
if patience >= self.patience:
self.adjust_learning_rate(self.args.lr_decay)
self.learning_rate *= self.args.lr_decay
self.writer.add_scalar('train/lr', self.learning_rate, self.global_step)
metric_save = valid_perplexity
patience = 0
self.patience += 1
if check_point > 0 and self.global_step % check_point == 0:
self.save_model(save_dir, save_prefix)
if self.global_step >= num_steps:
exit_tag = True
return exit_tag, metric_save, patience
def train(self, dataset):
patience, metric_save = 0, 1e10
step_pbar = tqdm(total=self.args.num_steps)
exit_tag = False
self.writer.add_scalar('train/lr', self.learning_rate, self.global_step)
while not exit_tag:
train_batches = dataset.gen_mini_batches('train', self.args.batch_size, shuffle=True)
exit_tag, metric_save, patience = self._train_epoch(train_batches, dataset, metric_save, patience, step_pbar)
def evaluate(self, eval_batches, dataset):
total_click_loss, total_rel_loss, total_num = 0., 0., 0
perplexity_at_rank = torch.zeros(10, device=device, dtype=torch.float) # 10 docs per query
with torch.no_grad():
for b_idx, batch in enumerate(eval_batches):
# Create TRUE_CLICKS & MASK tensor
TRUE_CLICKS = rnn_utils.pad_sequence([torch.from_numpy(np.array(true_click, dtype=np.float32)) for true_click in batch['true_clicks']], batch_first=True)
MASK = rnn_utils.pad_sequence([torch.ones(len(true_click)) for true_click in batch['true_clicks']], batch_first=True)
MASK = (MASK == 1)
query_num = MASK.sum() // 10
if use_cuda:
TRUE_CLICKS, MASK = TRUE_CLICKS.cuda(), MASK.cuda()
self.model.eval()
pred_logits, pred_rels = self.model(batch['qids'], batch['uids'], batch['vids'], batch['clicks'])
click_loss = self.compute_click_loss(pred_logits, TRUE_CLICKS, MASK)
batch_perplexity_at_rank = self.compute_perplexity(pred_logits, TRUE_CLICKS, MASK)
perplexity_at_rank = perplexity_at_rank + batch_perplexity_at_rank
total_click_loss += click_loss * query_num
total_num += query_num
click_loss = 1.0 * total_click_loss / total_num
rel_loss = 1.0 * total_rel_loss / total_num
perplexity = (2 ** (- perplexity_at_rank / total_num)).sum() / 10
return click_loss, rel_loss, perplexity
def ranking(self, label_batches, dataset):
ndcgs, cnt_useless_session, cnt_usefull_session = {}, {}, {}
for k in self.trunc_levels:
ndcgs[k] = 0.0
cnt_useless_session[k] = 0
cnt_usefull_session[k] = 0
with torch.no_grad():
for b_idx, batch in enumerate(label_batches):
self.model.eval()
true_relevances_batches = batch['relevances']
pred_logits, pred_rels = self.model(batch['qids'], batch['uids'], batch['vids'], batch['clicks'])
relevances_batches = torch.zeros(pred_logits.shape[0], 10)
for r_idx, relevance_start in enumerate(batch['relevance_starts']):
relevances_batches[r_idx] = pred_logits[r_idx, relevance_start : relevance_start + 10]
relevances_batches = relevances_batches.data.cpu().numpy().tolist()
for relevances, true_relevances in zip(relevances_batches, true_relevances_batches):
pred_rels = {}
for idx, relevance in enumerate(relevances):
pred_rels[idx] = relevance
for k in self.trunc_levels:
ideal_ranking_relevances = sorted(true_relevances, reverse=True)[:k]
ranking = sorted([idx for idx in pred_rels], key = lambda idx : pred_rels[idx], reverse=True)
ranking_relevances = [true_relevances[idx] for idx in ranking[:k]]
dcg = self.dcg(ranking_relevances)
idcg = self.dcg(ideal_ranking_relevances)
ndcg = dcg / idcg if idcg > 0 else 1.0
if idcg == 0:
cnt_useless_session[k] += 1
else:
ndcgs[k] += ndcg
cnt_usefull_session[k] += 1
for k in self.trunc_levels:
ndcgs[k] /= cnt_usefull_session[k]
return ndcgs
def dcg(self, ranking_relevances):
"""
Computes the DCG for a given ranking_relevances
"""
return sum([(2 ** relevance - 1) / math.log(rank + 2, 2) for rank, relevance in enumerate(ranking_relevances)])
def save_model(self, model_dir, model_prefix):
"""
Save the model into model_dir with model_prefix as the model indicator
"""
torch.save(self.model.state_dict(), os.path.join(model_dir, model_prefix+'_{}.model'.format(self.global_step)))
torch.save(self.optimizer.state_dict(), os.path.join(model_dir, model_prefix + '_{}.optimizer'.format(self.global_step)))
self.logger.info('Model and optimizer saved in {}, with prefix {} and global step {}.'.format(model_dir, model_prefix, self.global_step))
def load_model(self, model_dir, model_prefix, global_step):
"""
Load the model from model_dir with model_prefix as the model indicator
"""
optimizer_path = os.path.join(model_dir, model_prefix + '_{}.optimizer'.format(global_step))
self.optimizer.load_state_dict(torch.load(optimizer_path))
self.logger.info('Optimizer restored from {}, with prefix {} and global step {}.'.format(model_dir, model_prefix, global_step))
model_path = os.path.join(model_dir, model_prefix + '_{}.model'.format(global_step))
if use_cuda:
state_dict = torch.load(model_path)
else:
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)
self.model.load_state_dict(state_dict)
self.logger.info('Model restored from {}, with prefix {} and global step {}.'.format(model_dir, model_prefix, global_step))