-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
160 lines (141 loc) · 5.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torch
from sklearn.model_selection import KFold
EPOCH = 10
# CUDA 초기화
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if device.type == "cuda":
torch.cuda.init()
data_transforms = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 이미지 데이터셋
train_dataset = datasets.ImageFolder(root='trainImages', transform=data_transforms)
test_dataset = datasets.ImageFolder(root='testImages', transform=data_transforms)
# 모델 생성 후 L2 정규화 적용
resnet = torch.hub.load('pytorch/vision:v0.6.0', 'resnet34')
resnet.fc = nn.Sequential(
nn.Dropout(p=0.5), # 드롭아웃 추가
nn.Linear(512, 26) # 출력층의 뉴런 수는 26
)
# L2 정규화 적용할 가중치 파라미터를 모아둘 리스트
weight_decay_params = []
bias_params = []
# 정규화 비율 설정
weight_decay = 0.001
# 모든 가중치 파라미터를 추출하여 정규화 적용
for name, param in resnet.named_parameters():
if 'bias' in name:
bias_params.append(param)
else:
weight_decay_params.append(param)
# 교차 검증을 위한 KFold 객체 생성
kfold = KFold(n_splits=5, shuffle=True)
# 각 폴드에 대해 반복
for fold, (train_indices, val_indices) in enumerate(kfold.split(train_dataset)):
# 데이터셋 분할
train_sampler = torch.utils.data.SubsetRandomSampler(train_indices)
val_sampler = torch.utils.data.SubsetRandomSampler(val_indices)
trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=32,
sampler=train_sampler, num_workers=0)
valloader = torch.utils.data.DataLoader(train_dataset, batch_size=32,
sampler=val_sampler, num_workers=0)
# 모델 학습을 위한 하이퍼파라미터 설정
criterion = nn.CrossEntropyLoss()
# 정규화를 위한 optimizer 생성
optimizer = optim.SGD([
{'params': weight_decay_params, 'weight_decay': weight_decay},
{'params': bias_params, 'weight_decay': 0.0}
], lr=0.001, momentum=0.9)
# 학습률 스케줄러 생성
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
# 모델 학습
resnet.to(device)
best_accuracy = 0.0 # 최고 정확도를 저장하기 위한 변수
train_losses = []
val_losses = []
accuracies = []
for epoch in range(EPOCH):
running_loss = 0.0
val_loss = 0.0
val_correct = 0
val_total = 0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = resnet(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 1500 == 1499:
train_loss = running_loss / 100
train_losses.append(train_loss)
running_loss = 0.0
# 학습률 스케줄링
scheduler.step()
# 검증 데이터셋을 이용하여 모델 성능 평가
with torch.no_grad():
for data in valloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = resnet(images)
loss = criterion(outputs, labels)
_, predicted = torch.max(outputs.data, 1)
val_total += labels.size(0)
val_correct += (predicted == labels).sum().item()
val_loss = loss.item()
val_losses.append(val_loss)
accuracy = 100 * val_correct / val_total
accuracies.append(accuracy)
print('[fold: %d, epoch: %d] train loss: %.3f, val loss: %.3f, accuracy: %.2f' % (
fold + 1, epoch + 1, train_losses[-1], val_losses[-1], accuracy))
# 최고 정확도일 때 모델 저장
if accuracy > best_accuracy:
best_accuracy = accuracy
torch.save(resnet.state_dict(), 'resnet34_best.pth')
# 결과 저장
result_file = "result_resnet34.txt"
with open(result_file, "a") as f:
f.write("******** Fold {} ******/**\n".format(fold+1))
for epoch in range(EPOCH):
f.write("Epoch: {}\n".format(epoch + 1))
f.write("Train Loss: {:.3f}\n".format(train_losses[epoch]))
f.write("Val Loss: {:.3f}\n".format(val_losses[epoch]))
f.write("Accuracy: {:.2f}%\n".format(accuracies[epoch]))
f.write("----------\n")
# 테스트 데이터셋에 대한 DataLoader 생성
testloader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=0)
# 모델 평가
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = resnet(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
test_accuracy = 100 * correct / total
print('Accuracy of the network on the testImages images: %.2f %%' % test_accuracy)
# 모델 가중치 저장
torch.save(resnet.state_dict(), 'resnet34_weights.pth')
# 결과 저장
# result_file = "result_resnet34.txt"
with open(result_file, "a") as f:
# for epoch in range(EPOCH):
# f.write("Epoch: {}\n".format(epoch + 1))
# f.write("Train Loss: {:.3f}\n".format(train_losses[epoch]))
# f.write("Val Loss: {:.3f}\n".format(val_losses[epoch]))
# f.write("Accuracy: {:.2f}%\n".format(accuracies[epoch]))
# f.write("----------\n")
f.write("\nTest Accuracy: {:.2f}%\n".format(test_accuracy))