-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
64 lines (45 loc) · 1.84 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from flask import Flask, request, jsonify
import dill
import pickle
from tensorflow import keras
from keras.utils.data_utils import pad_sequences
from statistics import mode
import logging
from src.train import preprocess_text
# # Create logs directory if id doesn't exist
# Path("/logs").mkdir(parents=True, exist_ok=True)
logging.basicConfig(filename='logs/record.log', level=logging.DEBUG)
app = Flask("Product_Categorization")
def predict_sample(text):
encoded_text = tokenizer.texts_to_sequences(text)
padded_docs = pad_sequences(encoded_text, maxlen=100, padding='post')
pred = model.predict(padded_docs).tolist()
threshold = sum(pred[0]) / len(pred[0])
for i in range(len(pred[0])):
if pred[0][i] < threshold:
pred[0][i] = 0
else:
pred[0][i] = 1
return vectorizer.inverse_transform(pred)[0]
@app.route("/prediction", methods=['GET', 'POST'])
def product_categorize():
try:
query = request.get_json()["product_name"]
prediction = predict_sample(preprocess_text(query))
if len(prediction) < 3:
categories = prediction[0] + " > " + prediction[1]
else:
# you can return more if you like
categories = prediction[0] + " > " + prediction[1] + " > " + prediction[2]
return jsonify({"categories": categories.strip()})
except Exception as e:
app.logger.warning("User input is not entered" + "\n" + e)
if __name__ == "__main__":
# load tokenizer
with open('tokenizer/tokenizer.pickle', 'rb') as tkn:
tokenizer = pickle.load(tkn)
# with open('vectorizer/vectorizer.pickle', 'rb') as vec:
vectorizer = dill.load(open('vectorizer/vectorizer.pickle', 'rb'))
model = keras.models.load_model('models/model.h5')
# Launch the Flask dev server
app.run(host="localhost", debug=False)