-
Notifications
You must be signed in to change notification settings - Fork 7
/
predict_churn_rf_pyspark.py
executable file
·29 lines (25 loc) · 1.32 KB
/
predict_churn_rf_pyspark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from pyspark.sql import SparkSession
from pyspark.sql.types import *
from pyspark.ml import PipelineModel
from pyspark.sql.types import StructType, StructField, IntegerType, StringType
spark = SparkSession.builder \
.appName("Telco Customer Churn") \
.master("local[*]") \
.getOrCreate()
model = PipelineModel.load("models/spark/rf")
features = ["intl_plan", "account_length", "number_vmail_messages", "total_day_calls",
"total_day_charge", "total_eve_calls", "total_eve_charge",
"total_night_calls", "total_night_charge", "total_intl_calls",
"total_intl_charge","number_customer_service_calls"]
def predict(args):
account=args["feature"].split(",")
feature = spark.createDataFrame([account[:1] + list(map(float,account[1:12]))], features)
result=model.transform(feature).collect()[0].prediction
return {"result" : result}
#features = ["intl_plan_indexed","account_length", "number_vmail_messages", "total_day_calls",
# "total_day_charge", "total_eve_calls", "total_eve_charge",
# "total_night_calls", "total_night_charge", "total_intl_calls",
# "total_intl_charge","number_customer_service_calls"
predict({
"feature": "no, 128, 25, 256, 110, 197.4, 50, 244.7, 91, 10, 5, 1"
})