-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
2,044 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,250 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "0e462e84", | ||
"metadata": { | ||
"colab": { | ||
"base_uri": "https://localhost:8080/" | ||
}, | ||
"executionInfo": { | ||
"elapsed": 364, | ||
"status": "ok", | ||
"timestamp": 1630409305031, | ||
"user": { | ||
"displayName": "Daniel Bojar", | ||
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GgqK9Tu9YrkihvM5n0N7oStKrVaKvnc25sL21EXvg=s64", | ||
"userId": "10339697633531698497" | ||
}, | ||
"user_tz": -120 | ||
}, | ||
"id": "0e462e84", | ||
"outputId": "9ae23fd6-0474-4e16-f0df-102f4012fca8", | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"from sklearn.ensemble import AdaBoostClassifier\n", | ||
"from sklearn.model_selection import RandomizedSearchCV\n", | ||
"from sklearn.model_selection import train_test_split\n", | ||
"from sklearn.metrics import roc_auc_score\n", | ||
"from sklearn.metrics import f1_score\n", | ||
"from sklearn.metrics import log_loss" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "69ce648f", | ||
"metadata": {}, | ||
"source": [ | ||
"### 1. Prepare input data\n", | ||
"-----" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "f7ac683f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Function: determine PHA-L read cut-offs for binary classification \n", | ||
"def categorize_lectin(data_all, quantile_high, quantile_low, ref_col_loc):\n", | ||
" cutoff = np.quantile(data_all.iloc[:,ref_col_loc], [quantile_high, quantile_low], interpolation=\"nearest\").tolist()\n", | ||
" print(f\"Cut-off for PHA-L high: {cutoff[0]}; Cut-off for PHA-L low: {cutoff[1]}\")\n", | ||
" \n", | ||
" high_indices = np.array(data_all.iloc[:,ref_col_loc]>=cutoff[0])\n", | ||
" low_indices = np.array(data_all.iloc[:,ref_col_loc]<cutoff[1])\n", | ||
" high_low_indices = np.logical_or(high_indices, low_indices)\n", | ||
"\n", | ||
" high_count = high_indices.sum()\n", | ||
" low_count = low_indices.sum()\n", | ||
" \n", | ||
" return cutoff, [high_indices, low_indices, high_low_indices], [high_count, low_count]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "0d668932", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Load input file\n", | ||
"input_df = pd.read_csv('TIL_transformed_data.csv')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "6be21275", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Process data: binary classification\n", | ||
"quantile_high, quantile_low = 0.75, 0.25\n", | ||
"cutoff, indices, count = categorize_lectin(input_df, quantile_high, quantile_low, -1)\n", | ||
"\n", | ||
"input_df.loc[indices[0], \"PHA-L\"] = 1\n", | ||
"input_df.loc[indices[1], \"PHA-L\"] = 0\n", | ||
"\n", | ||
"input_df = input_df.loc[indices[2], :]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "1c1f84f5", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#y: class array\n", | ||
"y = input_df['PHA-L'].values \n", | ||
"#X: transcript data array\n", | ||
"X = input_df.iloc[:, 1:-1].values" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "695d43fb", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Split training, validation and test set\n", | ||
"X_train_val, X_test, y_train_val, y_test = train_test_split(\n", | ||
" X, y, test_size=0.1, random_state=342, stratify=y)\n", | ||
"\n", | ||
"X_train, X_val, y_train, y_val = train_test_split(\n", | ||
" X_train_val, y_train_val, test_size=0.2, random_state=2, stratify=y_train_val)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "f48a354d", | ||
"metadata": {}, | ||
"source": [ | ||
"### 2. Model training\n", | ||
"-----" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "1cfa09a8", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Parameters for grid search\n", | ||
"\n", | ||
"# Number of trees in random forest\n", | ||
"n_estimators = [int(x) for x in np.arange(100, 600, step=100)]\n", | ||
"# Maximum number of levels in tree\n", | ||
"learning_rate = [0.1, 1]\n", | ||
"# Create the random grid\n", | ||
"random_grid = {'n_estimators': n_estimators,\n", | ||
" 'learning_rate': learning_rate\n", | ||
" }" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "905cc7da", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Use RandomSearchCV to optimize hyperparameters\n", | ||
"model = AdaBoostClassifier()\n", | ||
"\n", | ||
"model_random = RandomizedSearchCV(estimator = model, param_distributions = random_grid, n_iter = 10, cv = 5, verbose=5, random_state=42, n_jobs = -1)\n", | ||
"\n", | ||
"model_random.fit(X_train, y_train)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7fec9b15", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Return the best estimator\n", | ||
"model = model_random.best_estimator_\n", | ||
"model.get_params()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "830a808f", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def model_evaluation(model, X, y):\n", | ||
" print(f\"Accuracy for 'PHA-L high' class: {100*(model.score(X[y==1], y[y==1])):>4f}%\")\n", | ||
" print(f\"Accuracy for 'PHA-L low' class: {100*(model.score(X[y==0], y[y==0])):>4f}%\")\n", | ||
" print(f\"Overall accuracy: {100*(model.score(X, y)):>4f}%\")\n", | ||
"\n", | ||
" model_predict = model.predict(X)\n", | ||
" model_predict_prob = model.predict_proba(X)\n", | ||
"\n", | ||
" print(f\"Average loss: {log_loss(y, model_predict_prob):>4f}\")\n", | ||
" print(f\"ROC Curve AUC: {roc_auc_score(y, model_predict):>4f}\")\n", | ||
" print(f\"F1 score: {f1_score(y, model_predict):>4f}\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "26dfcfd7", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"model_evaluation(model, X_train, y_train)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "497eae16", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"model_evaluation(model, X_val, y_val)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"colab": { | ||
"collapsed_sections": [], | ||
"name": "RNA_lectin_ML_implementation_RQ.ipynb", | ||
"provenance": [] | ||
}, | ||
"interpreter": { | ||
"hash": "0c27f3dfbe5c91552ea375c193e935c23c9fbef877fb71378394b3d18f317895" | ||
}, | ||
"kernelspec": { | ||
"display_name": "Python 3.8.11 64-bit ('sc_rna_lectin': conda)", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.11" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.