Skip to content

KitikiPlot A Python library to visualize categorical sliding window data

License

Notifications You must be signed in to change notification settings

BodduSriPavan-111/kitikiplot

Repository files navigation

plot

PyPI PyPI - Downloads DOI License

KitikiPlot

KitikiPlot is a Python library for visualizing sequential and time-series categorical "Sliding Window" data.
(The term 'kitiki' means 'window' in Telugu)

Our preprint is published in TechRxiv. Find it here

Research paper is published in GIS Science Journal Volume 12 Issue 1, 186-193, 2025 (Scopus indexed with Impact factor 6.1).
Read it here: https://zenodo.org/records/14632005

Examples

Genome Visualization can be found in Genome.ipynb plot

Weather Pattern in Weather Pattern.ipynb plot

CO Trend in Air in Air_Quality.ipynb plot

Getting Started

Install the package via pip:

pip install kitikiplot

Usage

from kitikiplot import KitikiPlot

data = [] # DataFrame or list of sliding window data

ktk= KitikiPlot( data= data )

ktk.plot( display_legend= True ) # Display the legend

Check out the complete guide of customization here.

To-do

🚧 Streamlit Demo Interface (In Progress: app.py)

  • Tooltip
  • Interactive Plot
  • Multithreading to decrease plotting latency
  • CI/CD Pipeline
  • Domain-specific modules

Please refer CONTRIBUTING.md for contributions to kitikiplot.

Key Author

Boddu Sri Pavan

Citation

APA

Boddu Sri Pavan, Chandrasheker Thummanagoti, & Boddu Swathi Sree. (2025). KitikiPlot A Python library to visualize categorical sliding window data. https://doi.org/10.5281/zenodo.14632005.

IEEE

Boddu Sri Pavan, Chandrasheker Thummanagotiand Boddu Swathi Sree, “KitikiPlot A Python library to visualize categorical sliding window data”, 2025, doi: 10.5281/zenodo.14632005.

BibTeX

@misc{boddu_sri_pavan_2025_14632005,
author = {Boddu Sri Pavan and
Chandrasheker Thummanagoti and
Boddu Swathi Sree},
title = {KitikiPlot A Python library to visualize
categorical sliding window data
},
month = jan,
year = 2025,
publisher = {Zenodo},
doi = {10.5281/zenodo.14632005},
url = {https://doi.org/10.5281/zenodo.14632005},
}

Thank You !