-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathworker.py
95 lines (69 loc) · 2.71 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os
import torch
from langchain import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.llms import HuggingFaceHub
from ibm_watson_machine_learning.foundation_models.extensions.langchain import WatsonxLLM
from ibm_watson_machine_learning.foundation_models.utils.enums import ModelTypes, DecodingMethods
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
from ibm_watson_machine_learning.foundation_models import Model
from langchain import PromptTemplate
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
conversation_retrieval_chain = None
chat_history = []
llm_hub = None
embeddings = None
def init_llm():
global llm_hub, embeddings
my_credentials = {
"url" : "your_api_credentials"
}
params = {
GenParams.MAX_NEW_TOKENS: 256,
GenParams.TEMPERATURE: 0.1,
}
LLAMA2_model = Model(
model_id= 'meta-llama/llama-2-70b-chat',
credentials=my_credentials,
params=params,
project_id="your_project_id"
)
llm_hub = WatsonxLLM(model=LLAMA2_model)
embeddings = HuggingFaceInstructEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": DEVICE}
)
# Function to process a PDF document
def process_document(document_path):
global conversation_retrieval_chain
# Load the document
loader = PyPDFLoader(document_path)
documents = loader.load()
# Split the document into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
texts = text_splitter.split_documents(documents)
# Create an embeddings database using Chroma from the split text chunks.
db = Chroma.from_documents(texts, embedding=embeddings)
conversation_retrieval_chain = RetrievalQA.from_chain_type(
llm=llm_hub,
chain_type="stuff",
retriever=db.as_retriever(search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25}),
return_source_documents=False,
input_key = "question"
)
# Function to process a user prompt
def process_prompt(prompt):
global conversation_retrieval_chain
global chat_history
# Query the model
output = conversation_retrieval_chain({"question": prompt, "chat_history": chat_history})
answer = output["result"]
# Update the chat history
chat_history.append((prompt, answer))
# Return the model\'s response
return answer
# Initialize the language model
init_llm()