-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDAO_TCGA.py
162 lines (133 loc) · 5.03 KB
/
DAO_TCGA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import tensorflow as tf
from tensorflow.python.layers import base
import pickle
import pandas as pd
import numpy as np
from DAO_utils import ResBlock, Codebook, ResLayer
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
import sys
CN=int(sys.argv[1])
class DAO(base.Layer):
def __init__(self,X):
super(DAO,self).__init__()
self._input=X
self.encoder=ResBlock(81574,[1000,500,100,100],[(1,3),(2,4)])
self.decoder=ResBlock(100,[100,200,400,800,81574],[(1,3),(2,4)])
self.codebook=Codebook(100,CN)
def encode(self):
if not '_encode' in self.__dict__:
encoding=self.encoder(self._input)
self._encode=encoding
return self._encode
else:
return self._encode
def vector_quantization(self):
if not '_VQ' in self.__dict__:
self._VQ=self.codebook(self.encode())
return self._VQ
else:
return self._VQ
def decode(self):
if not '_reconstruction' in self.__dict__:
VQ=self.vector_quantization()
embed=self.encode()
discrete_embed=VQ[0]
dynamic_distance=tf.expand_dims(1./tf.stop_gradient(tf.norm(embed-discrete_embed,axis=-1)**2),axis=-1)
gradient_copy_embed=dynamic_distance*embed+tf.stop_gradient(discrete_embed)-dynamic_distance*tf.stop_gradient(embed)
self._reconstruction=self.decoder(gradient_copy_embed)
return self._reconstruction
else:
return self._reconstruction
def reconstruction_loss(self):
if not '_recon_loss' in self.__dict__:
X=self._input
Y=self.decode()
self._recon_loss=tf.reduce_mean(tf.norm((X-Y)/tf.clip_by_value(X,1,1000),axis=-1)**2)
return self._recon_loss
else:
return self._recon_loss
def VQ_loss(self):
if not '_vq_loss' in self.__dict__:
VQ=self.vector_quantization()
embed=self.encode()
discrete_embed=VQ[0]
self._vq_loss=tf.reduce_mean(tf.norm(tf.stop_gradient(embed)-discrete_embed,axis=-1)**2)
return self._vq_loss
else:
return self._vq_loss
def commit_loss(self):
if not '_commit_loss' in self.__dict__:
VQ=self.vector_quantization()
embed=self.encode()
discrete_embed=VQ[0]
self._commit_loss=tf.reduce_mean(tf.norm(embed-tf.stop_gradient(discrete_embed),axis=-1)**2)
return self._commit_loss
else:
return self._commit_loss
def codebook_loss(self):
if not '_cb_loss' in self.__dict__:
cb=self.codebook.lookup_table
embed=self.encode()
self._cb_loss=tf.reduce_mean(tf.norm(cb-tf.reduce_mean(tf.stop_gradient(embed),axis=0),axis=-1)**2)
return self._cb_loss
else:
return self._cb_loss
def Loss(self):
if not '_loss' in self.__dict__:
self._loss=self.reconstruction_loss()+1.0*self.VQ_loss()+1.0*self.commit_loss()+0.001*self.codebook_loss()
return self._loss
else:
return self._loss
def optimizer(self):
self._optimizer=tf.train.AdamOptimizer(learning_rate=0.0001).minimize(self.Loss(),var_list=tf.trainable_variables())
return self._optimizer
X=tf.placeholder(tf.float32,shape=[None,81574],name='input')
model=DAO(X)
optimizer=model.optimizer()
index=model.vector_quantization()[1]
decoder_loss=model.reconstruction_loss()
hidden_vector=model.encode()
codebook=model.codebook.lookup_table
def get_batch(data,batch_size):
result=[]
col=list(data.columns)
np.random.shuffle(col)
while len(col)>=batch_size:
result.append(data.loc[:,col[:batch_size]].values)
col=col[batch_size:]
return result
file=open('../TCGA/TCGA_ex_sp100all_mean_normalis0.pkl','rb')
data=pickle.load(file)
file.close()
#data=data.iloc[:,7:]
data=data.iloc[:,7:]
config=tf.ConfigProto()
#config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
tf.global_variables_initializer().run()
for epoch in range(200):
print('epoch %d'%(epoch))
batchfied_training_data=get_batch(data,32)
training_loss_list=[]
for i in batchfied_training_data:
input_=i[:-3].transpose()
loss_,_,index_=sess.run([decoder_loss,optimizer,index],feed_dict={X:input_})
training_loss_list.append(loss_)
print(np.mean(training_loss_list))
print(index_,flush=True)
'''
index_,h_=sess.run([index,hidden_vector],feed_dict={X:data[:-3].transpose})
file=open('DAO_TCGA_{}.pkl'.format(CN),'wb')
pickle.dump(index_,file)
file.close()
file=open('DAO_TCGA_hidden.pkl'.format(CN),'wb')
pickle.dump(h_,file)
file.close()
cb=sess.run(codingtable.lookup_table)
file=open('DAO_TCGA_codebook.pkl'.format(CN),'wb')
pickle.dump(cb,file)
file.close()
'''
saver=tf.train.Saver()
saver.save(sess,'save_model/DAO_TCGA_{}.ckpt'.format(CN))