-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolov5_model_trial.py
139 lines (114 loc) · 4.71 KB
/
yolov5_model_trial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
from datetime import date
import cv2 as cv
import face_recognition
import numpy as np
import xlrd
from xlutils.copy import copy as xl_copy
# Load YOLOv5 model for face detection
CurrentFolder = os.getcwd()
yolo_weights = CurrentFolder + '\\yolov5s.pt'
yolo_config = CurrentFolder + '\\yolov5s.yaml'
yolo_net = cv.dnn.readNet(yolo_weights, yolo_config, "Darknet")
# Read current folder path
image1 = CurrentFolder + '\\arjit.png'
image2 = CurrentFolder + '\\hemant.png'
cam_port = 0
video_capture = cv.VideoCapture(cam_port)
# Load a sample picture and learn how to recognize it.
person1_name = "arjit"
person1_image = face_recognition.load_image_file(image1)
person1_face_encoding = face_recognition.face_encodings(person1_image)[0]
person2_name = "hemant"
person2_image = face_recognition.load_image_file(image2)
person2_face_encoding = face_recognition.face_encodings(person2_image)[0]
# Create list of known face encodings and their names
known_face_encodings = [
person1_face_encoding,
person2_face_encoding
]
known_face_names = [
person1_name,
person2_name
]
# Initialize some variables
face_names = []
process_this_frame = True
# Setting up the attendance Excel file
rb = xlrd.open_workbook('attendance_excel.xls', formatting_info=True)
wb = xl_copy(rb)
subject_name = input('Please give current subject lecture name ')
sheet1 = wb.add_sheet(subject_name)
sheet1.write(0, 0, 'Name/Date')
sheet1.write(0, 1, str(date.today()))
row = 1
col = 0
already_attendance_taken = ""
while True:
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster processing
small_frame = cv.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color
rgb_small_frame = cv.cvtColor(small_frame, cv.COLOR_BGR2RGB)
if process_this_frame:
# Detect faces using YOLOv5
blob = cv.dnn.blobFromImage(rgb_small_frame, 1 / 255.0, (416, 416), swapRB=True, crop=False)
yolo_net.setInput(blob)
detections = yolo_net.forward()
face_locations = []
for detection in detections[0]:
confidence = detection[4]
if confidence > 0.5:
center_x = int(detection[0] * small_frame.shape[1])
center_y = int(detection[1] * small_frame.shape[0])
width = int(detection[2] * small_frame.shape[1])
height = int(detection[3] * small_frame.shape[0])
# Calculate face bounding box coordinates
left = max(center_x - width // 2, 0)
top = max(center_y - height // 2, 0)
right = min(center_x + width // 2, small_frame.shape[1])
bottom = min(center_y + height // 2, small_frame.shape[0])
face_locations.append((top, right, bottom, left))
face_encodings = [face_recognition.face_encodings(rgb_small_frame, [box])[0] for box in face_locations]
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
if (already_attendance_taken != name) and (name != "Unknown"):
# Update the attendance of the student
sheet1.write(row, col, name)
col = col + 1
sheet1.write(row, col, "Present")
row = row + 1
col = 0
print("Attendance taken for", name)
wb.save('attendance_excel.xls')
already_attendance_taken = name
else:
print("Next student")
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4
cv.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv.FILLED)
font = cv.FONT_HERSHEY_DUPLEX
cv.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
cv.imshow("Video", frame)
# Hit 'q' on the keyboard to quit
if cv.waitKey(1) & 0xFF == ord('q'):
print("Data saved")
break
# Release handle to the webcam
video_capture.release()
cv.destroyAllWindows()