-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_recognition_code.py
116 lines (96 loc) · 3.75 KB
/
face_recognition_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
from datetime import date
import cv2 as cv
import face_recognition
import numpy as np
import xlrd
from xlutils.copy import copy as xl_copy
# Read current folder path
CurrentFolder = os.getcwd()
image1 = CurrentFolder + '\\arjit.png'
image2 = CurrentFolder + '\\hemant.png'
cam_port = 0
video_capture = cv.VideoCapture(cam_port)
# Load a sample picture and learn how to recognize it.
person1_name = "arjit"
person1_image = face_recognition.load_image_file(image1)
person1_face_encoding = face_recognition.face_encodings(person1_image)[0]
person2_name = "hemant"
person2_image = face_recognition.load_image_file(image2)
person2_face_encoding = face_recognition.face_encodings(person2_image)[0]
# Create list of known face encodings and their names
known_face_encodings = [
person1_face_encoding,
person2_face_encoding
]
known_face_names = [
person1_name,
person2_name
]
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
# Setting up the attendance Excel file
rb = xlrd.open_workbook('attendance_excel.xls', formatting_info=True)
wb = xl_copy(rb)
subject_name = input('Please give current subject lecture name: ')
sheet1 = wb.add_sheet(subject_name)
sheet1.write(0, 0, 'Name/Date')
sheet1.write(0, 1, str(date.today()))
row = 1
col = 0
already_attendance_taken = ""
while True:
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = np.ascontiguousarray(small_frame[:, :, ::-1])
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
if (already_attendance_taken != name) and (name != "Unknown"):
# Update the attendance of the student
sheet1.write(row, col, name)
col = col + 1
sheet1.write(row, col, "Present")
row = row + 1
col = 0
print("attendance taken")
wb.save('attendance_excel.xls')
already_attendance_taken = name
else:
print("next student")
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4
cv.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv.FILLED)
font = cv.FONT_HERSHEY_DUPLEX
cv.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
cv.imshow("Video", frame)
# Hit 'q' on the keyboard to quit!
if cv.waitKey(1) & 0xff == ord('q'):
print("data save")
break
# Release handle to the webcam
video_capture.release()
cv.destroyAllWindows()