Skip to content

Commit

Permalink
Use new tf API for summaries to fix deprecation warnings
Browse files Browse the repository at this point in the history
  • Loading branch information
Mathias Landhäußer committed Feb 3, 2017
1 parent eb9eb5c commit c8eccb2
Showing 1 changed file with 9 additions and 9 deletions.
18 changes: 9 additions & 9 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,30 +97,30 @@
grad_summaries = []
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.histogram_summary("{}/grad/hist".format(v.name), g)
sparsity_summary = tf.scalar_summary("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
grad_summaries_merged = tf.merge_summary(grad_summaries)
grad_summaries_merged = tf.summary.merge(grad_summaries)

# Output directory for models and summaries
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
print("Writing to {}\n".format(out_dir))

# Summaries for loss and accuracy
loss_summary = tf.scalar_summary("loss", cnn.loss)
acc_summary = tf.scalar_summary("accuracy", cnn.accuracy)
loss_summary = tf.summary.scalar("loss", cnn.loss)
acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)

# Train Summaries
train_summary_op = tf.merge_summary([loss_summary, acc_summary, grad_summaries_merged])
train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged])
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.train.SummaryWriter(train_summary_dir, sess.graph)
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)

# Dev summaries
dev_summary_op = tf.merge_summary([loss_summary, acc_summary])
dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
dev_summary_writer = tf.train.SummaryWriter(dev_summary_dir, sess.graph)
dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)

# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
Expand Down

0 comments on commit c8eccb2

Please sign in to comment.