-
Notifications
You must be signed in to change notification settings - Fork 0
/
8_ANN_w_ERA5.py
992 lines (850 loc) · 40.2 KB
/
8_ANN_w_ERA5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
# -*- coding: utf-8 -*-
"""
@author: bav@geus.dk
tip list:
%matplotlib inline
%matplotlib qt
import pdb; pdb.set_trace()
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import geopandas as gpd
import xarray as xr
import rasterio as rio
import dask
import matplotlib
# loading T10m dataset
df = pd.read_csv("output/10m_temperature_dataset_monthly.csv")
df = df.loc[~pd.to_numeric(df.depthOfTemperatureObservation, errors="coerce").isnull(), :]
df['date'] = pd.to_datetime(df.date, utc=True).dt.tz_localize(None)
df["year"] = pd.DatetimeIndex(df.date).year
df.loc[df.site=='CEN1','site'] = 'Camp Century'
df.loc[df.site=='CEN2','site'] = 'Camp Century'
df.loc[df.site=='CEN','site'] = 'Camp Century'
# spatial selection to the contiguous ice sheet
print(len(df), 'observation in dataset')
ice = gpd.GeoDataFrame.from_file("Data/misc/IcePolygon_3413.shp")
ice = ice.to_crs("EPSG:3413")
ice_4326 = ice.to_crs(4326)
gdf = gpd.GeoDataFrame(df, geometry=gpd.points_from_xy(df.longitude, df.latitude), crs="EPSG:4326")
ind_in = gpd.sjoin(gdf, ice_4326, predicate='within').index
plt.figure()
ice_4326.plot()
gdf.loc[[i for i in gdf.index if i not in ind_in]].plot(color='r', ax=plt.gca())
print(gdf.loc[[i for i in gdf.index if i not in ind_in]])
print(len(df)-len(ind_in), 'observations outside ice sheet mask')
df = df.loc[ind_in, :]
# temporal selection
print(((df.date<'1949-12-31') | (df.date>'2023')).sum(),'observations outside of 1950-2022')
print(df.loc[((df.date<'1949-12-31') | (df.date>'2023')),:])
df.loc[(df.date<='1949-12-01') | (df.date>='2023'),:]
df = df.loc[(df.date>'1949-12-01') & (df.date<'2023'),:]
print(len(df), 'observations kept')
land = gpd.GeoDataFrame.from_file("Data/misc/Land_3413.shp")
years = df["year"].values
years.sort()
df = df.reset_index(drop=True)
firn_memory = 5
Predictors = (
["t2m_amp", "t2m_10y_avg", "sf_10y_avg"]
+ ["sf_" + str(i) for i in range(firn_memory)]
+ ["t2m_" + str(i) for i in range(firn_memory)]
+ ["month"]
)
# Extracting ERA5 data
print('loading ERA5 data')
produce_input_grid = 0
if produce_input_grid:
with dask.config.set(**{'array.slicing.split_large_chunks': False}):
ds_era = xr.open_mfdataset(("Data/ERA5/ERA5_monthly_temp_snowfall.nc",
'Data/ERA5/m_era5_t2m_sf_2022_proc.nc')).load()
ds_era_1940 = xr.open_dataset('Data/ERA5/ERA5_monthly_temperature_precipitation_1940_1950.nc')[['t2m']]
ds_era_1940['sf'] = xr.open_dataset('Data/ERA5/ERA5_monthly_snowfall_1940_1950.nc')['sf']
ds_era_1940 = ds_era_1940.interp_like(ds_era.t2m.isel(time=0), method='linear')
ds_era = ds_era.combine_first(ds_era_1940)
print('t2m_avg and sf_avg')
ds_era["t2m_10y_avg"] = ds_era.t2m.rolling(time=10*12).mean()
ds_era["sf_10y_avg"] = ds_era.sf.rolling(time=10*12).mean()
print('t2m_amp')
ds_era["t2m_amp"] = ds_era.t2m.rolling(time=12).max() - ds_era.t2m.rolling(time=12).min()
print('t2m_0 and sf_0')
ds_era["t2m_0"] = ds_era.t2m.rolling(time=12).mean()
ds_era["sf_0"] = ds_era.sf.rolling(time=12).mean()*12
for k in range(0, firn_memory):
print(k+1,'/',firn_memory)
ds_era["t2m_" + str(k)] = ds_era["t2m_0"].shift(time=12*k)
ds_era["sf_" + str(k)] = ds_era["sf_0"].shift(time=12*k)
ds_era['month'] = np.cos((ds_era.time.dt.month-1)/12*2*np.pi)
#cropping the first 10 years
ds_era = ds_era.isel(time=slice(10*12,None))
ds_era.to_netcdf("output/era5_monthly_plus_predictors.nc")
else:
ds_era = xr.open_dataset("output/era5_monthly_plus_predictors.nc")
time_era = ds_era.time
for i in range(firn_memory):
df["t2m_" + str(i)] = np.nan
df["sf_" + str(i)] = np.nan
df["time_era"] = np.nan
df["t2m_amp"] = np.nan
# extrapolating ERA5
tmp = ds_era.isel(time=-1)
tmp['time'] = tmp.time + pd.Timedelta('31 days')
ds_era = xr.concat((ds_era, tmp), dim='time')
print("interpolating ERA at the observation sites")
tmp = ds_era.interp(longitude = xr.DataArray(df.longitude, dims="points"),
latitude = xr.DataArray(df.latitude, dims="points"),
time = xr.DataArray(df.date, dims="points"),
method="nearest").load()
df[Predictors] = tmp[Predictors].to_dataframe()[Predictors].values
df["date"] = pd.to_datetime(df.date)
df["year"] = df["date"].dt.year
df.loc[df.t2m_amp.isnull()]
print('plotting')
fig, ax = plt.subplots(3, 4, figsize=(13,13))
ax = ax.flatten()
for i, ax in enumerate(ax):
ax.plot( df[Predictors[i]], df.temperatureObserved,
marker="o", linestyle="None", markersize=1.5)
ax.set_xlabel(Predictors[i])
ax.set_ylabel('temperatureObserved')
# masking on ice sheet
ds_era = ds_era.rio.write_crs(4326)
ice_4326 = ice.to_crs(4326)
msk = ds_era.t2m_amp.isel(time=12*5).rio.clip(ice_4326.geometry, ice_4326.crs)
ds_era = ds_era.where(msk.notnull())
# %% Representativity of the dataset
print('calculating weights based on representativity')
bins_temp = np.linspace(230, 275, 15) - 273.15
bins_sf = np.append(np.linspace(0, 0.06, 15),3)*1000
bins_amp = np.linspace(0, 55, 15)
# first calculating the target histograms (slow)
pred_list = ["t2m_10y_avg", "sf_10y_avg", "t2m_amp"]
target_hist = [None] * len(pred_list)
for i in range(len(pred_list)):
c=1
d=0
if pred_list[i] == 't2m_10y_avg':
bins = bins_temp
d = -273.15
if "amp" in pred_list[i]: bins = bins_amp
if "sf" in pred_list[i]:
c=1000*12
bins = bins_sf
print(pred_list[i])
target_hist[i], _ = np.histogram(ds_era[pred_list[i]].values*c + d, bins=bins)
target_hist[i] = target_hist[i].astype(np.float32) / target_hist[i].sum()
hist1 = target_hist[i]
hist2, _ = np.histogram(df[pred_list[i]].values*c + d, bins=bins)
weights_bins = 0 * hist1 + 1
weights_bins[hist2 != 0] = hist1[hist2 != 0] / hist2[hist2 != 0]
ind = np.digitize(df[pred_list[i]].values*c + d, bins)
df[pred_list[i] + "_w"] = weights_bins[ind - 1]
df["weights"] = df[[p + "_w" for p in pred_list]].mean(axis=1)
# plotting histograms
abc='abcdef'
pred_name = [r"$\overline{T_{2m,\ 10\ y}}$ (°C)",
r"$\overline{SF_{10\ y}}$ (mm w.e.)",
r"$T_{2m, amp.}$ (°C)"]
def weighted_median(data, weights):
"""
Args:
data (list or numpy.array): data
weights (list or numpy.array): weights
"""
data, weights = np.array(data).squeeze(), np.array(weights).squeeze()
s_data, s_weights = map(np.array, zip(*sorted(zip(data, weights))))
midpoint = 0.5 * sum(s_weights)
if any(weights > midpoint):
w_median = (data[weights == np.max(weights)])[0]
else:
cs_weights = np.cumsum(s_weights)
idx = np.where(cs_weights <= midpoint)[0][-1]
if cs_weights[idx] == midpoint:
w_median = np.mean(s_data[idx:idx+2])
else:
w_median = s_data[idx+1]
return w_median
h=['','','','']
fig, ax = plt.subplots(2, 3, figsize=(11, 8), sharey=True)
fig.subplots_adjust(left=0.08, right=0.99, top=0.8, wspace=0.05, hspace=1)
for k in range(2):
if k == 0:
ttl = "All observations weigh equally"
else:
ttl = "With weights based on representativity"
for i in range(len(pred_list)):
c=1
d=0
if pred_list[i] == 't2m_10y_avg':
bins = bins_temp
d = -273.15
if "amp" in pred_list[i]: bins = bins_amp
if "sf" in pred_list[i]:
c=1000*12
bins = bins_sf
hist1 = target_hist[i]
if k == 0:
hist2, _ = np.histogram(df[pred_list[i]].values*c + d, bins=bins)
elif k == 1:
hist2, _ = np.histogram(
df[pred_list[i]].values*c + d, bins=bins, weights=df["weights"].values
)
hist2 = hist2.astype(np.float32) / hist2.sum()
h[0] = ax[k,i].bar(bins[:-1], hist2,
width=(bins[1] - bins[0]),
alpha=0.5, color="tab:blue", edgecolor="lightgray",
label="ERA5 values at the observation sites",
)
if k == 0:
med1=np.median(df[pred_list[i]].values*c + d)
else:
med1=weighted_median(df[pred_list[i]].values*c + d, df["weights"].values)
h[1] = ax[k,i].axvline(med1,
color="tab:blue", ls='--', lw=3, label="median")
h[2] = ax[k,i].bar(bins[:-1], hist1,
width=(bins[1] - bins[0]),
alpha=0.5, color="tab:orange", edgecolor="lightgray",
label="ERA5 values for the entire ice sheet",
)
med2 =np.nanmedian(ds_era[pred_list[i]].values*c + d)
print(pred_list[i]+' %0.1f'%(med1- med2))
h[3] = ax[k,i].axvline(med2,
color="tab:orange", ls='--', lw=3,
label="median",
)
ind = (hist1 + hist2)>0
d_canberra = np.sum(np.abs(hist1[ind] - hist2[ind]) / (hist1[ind]))
ax[k,i].annotate(r"$d_{Canberra}= %0.1f$"% d_canberra,
xy=(0.65, 0.89), xycoords="axes fraction")
ax[k,i].set_ylim(0,0.35)
ax[k,i].set_xlabel(pred_name[i],fontsize=14)
if i ==0:
ax[k,i].set_ylabel("Probability (-)",fontsize=14)
else:
ax[k,i].set_ylabel("")
ax[k,i].set_title('(%s)'%abc[k*3+i], loc='left',weight='bold')
ax[k,i].grid(axis='y')
if i ==1:
ax[k,i].legend(handles=h,
loc="lower center",
title=ttl,
title_fontproperties={'weight':'bold'},
ncol=2,
bbox_to_anchor=(0.5, 1.2))
fig.savefig("figures/figure2_histograms.tif", dpi =900)
# fig.savefig("figures/figure2_histograms.pdf")
# %% ANN functions
# definition of the useful function to fit an ANN and run the trained model
import os; os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from sklearn.preprocessing import StandardScaler
from keras.layers import GaussianNoise
from scikeras.wrappers import KerasRegressor
from sklearn.model_selection import GridSearchCV
def train_ANN(df, Predictors, TargetVariable="temperatureObserved",
num_nodes = 32, num_layers = 2,
epochs = 50, batch_size=3000, plot=False):
w = df["weights"].values
X = df[Predictors].values
y = df[TargetVariable].values.reshape(-1, 1)
# Sandardization of data
PredictorScalerFit = StandardScaler().fit(X)
TargetVarScalerFit = StandardScaler().fit(y)
X = PredictorScalerFit.transform(X)
y = TargetVarScalerFit.transform(y)
# create and fit ANN model
model = Sequential()
model.add(GaussianNoise(0.01, input_shape=(len(Predictors),)))
for i in range(num_layers):
model.add(Dense(units=num_nodes, activation="relu"))
model.add(Dense(1))
model.compile(loss="mean_squared_error", optimizer="adam",weighted_metrics=[])
history = model.fit(X, y, batch_size=batch_size, epochs=epochs, verbose=0, sample_weight=w)
return model, PredictorScalerFit, TargetVarScalerFit
def ANN_predict(df, model, PredictorScalerFit, TargetVarScalerFit):
X = PredictorScalerFit.transform(df.values)
Y = model.predict(X, verbose=0)
Predictions = pd.DataFrame(
data=TargetVarScalerFit.inverse_transform(Y),
index=df.index,
columns=["temperaturePredicted"],
).temperaturePredicted
Predictions.loc[Predictions > 0] = 0
return Predictions
def create_model(n_layers, num_nodes):
model = Sequential()
model.add(GaussianNoise(0.01, input_shape=(len(Predictors),)))
for i in range(n_layers):
model.add(Dense(units=num_nodes, activation="relu"))
model.add(Dense(1))
model.compile(loss="mean_squared_error", optimizer="adam")
return model
# %% Testing batch size and epoch numbers
test_stability=0
plt.close('all')
if test_stability:
filename="./output/batch_size_epochs_grid_final.txt"
f = open(filename, "w")
def Msg(txt):
f = open(filename, "a")
print(txt)
f.write(txt + "\n")
df_train = df.loc[~np.isin(df.site,['NASA-E','SwissCamp','SWC','Swiss Camp', 'NASA-SE','KAN_M']), :].copy()
df_test = df.loc[np.isin(df.site,['NASA-E','SwissCamp','SWC','Swiss Camp', 'NASA-SE','KAN_M']), :].copy()
df_sub = df.loc[np.isin(df.site, ["Swiss Camp", "DYE-2", "KAN_U",
"Camp Century", 'KPC_U', 'QAS_U',
'NASA-E', 'NASA-SE','KAN_M']),:].copy()
for epochs in [10, 25]+[e for e in range(50,300,50)]+[e for e in range(200,1000,100)]: #:
for batch_size in [100, 500, 1000, 2000, 3000, 4000, 5000]:
# print(epochs, 'epochs')
num_models = 10
model = [None]*num_models
PredictorScalerFit = [None]*num_models
TargetVarScalerFit = [None]*num_models
# training the models
for i in range(num_models):
# print(i)
model[i], PredictorScalerFit[i], TargetVarScalerFit[i] = train_ANN(
df_train, Predictors, num_nodes = 32, num_layers=2, epochs=epochs,
batch_size=batch_size, plot=False,
)
df_test['out_mod_'+str(i)] = ANN_predict(df_test[Predictors],
model[i], PredictorScalerFit[i], TargetVarScalerFit[i]).values
df_train['out_mod_'+str(i)] = ANN_predict(df_train[Predictors],
model[i], PredictorScalerFit[i], TargetVarScalerFit[i]).values
Msg('%i, %i, %0.2f, %0.2f, %0.2f, %0.2f'%(batch_size, epochs,
(df_test['temperatureObserved'] - df_test['out_mod_'+str(i)]).mean(),
np.sqrt(((df_test['temperatureObserved'] - df_test['out_mod_'+str(i)])**2).mean()),
(df_train['temperatureObserved'] - df_train['out_mod_'+str(i)]).mean(),
np.sqrt(((df_train['temperatureObserved'] - df_train['out_mod_'+str(i)])**2).mean())))
# plt.close('all')
abc='abcdefghijklmnopqrst'
ls=['-','--',':','-.','-','--',':','-.','-','--',':','-.']
df_epochs = pd.read_csv('./output/batch_size_epochs_grid_final.txt',header=None)
df_epochs.columns=['batch_size','epochs','MD_val','RMSD_val', 'MD_train','RMSD_train']
tmp = df_epochs.groupby(['batch_size','epochs']).mean()
tmp[['MD_val_std','RMSD_val_std','MD_train_std','RMSD_train_std']] = df_epochs.groupby(['batch_size','epochs']).std().mean()
fig, ax = plt.subplots(7,2,figsize=(15,15), sharex=True)
plt.subplots_adjust(hspace=0.5)
for k, batch_size in enumerate(np.unique(tmp.index.get_level_values('batch_size'))):
ax[k,0].errorbar(tmp.loc[batch_size].index + k/2 - 2, tmp.loc[batch_size, 'MD_val'],
yerr=tmp.loc[batch_size, 'MD_val_std'], label = 'validation')
ax[k,1].errorbar(tmp.loc[batch_size].index + k/2 -2, tmp.loc[batch_size, 'RMSD_val'],
yerr=tmp.loc[batch_size, 'RMSD_val_std'])
ax[k,0].errorbar(tmp.loc[batch_size].index + k/2 - 2, tmp.loc[batch_size, 'MD_train'],
yerr=tmp.loc[batch_size, 'MD_train_std'], label = 'training')
ax[k,1].errorbar(tmp.loc[batch_size].index + k/2 -2, tmp.loc[batch_size, 'RMSD_train'],
yerr=tmp.loc[batch_size, 'RMSD_train_std'])
ax[k,0].set_ylabel('MD (°C)')
ax[k,1].set_ylabel('RMSD (°C)')
# ax[0].set_xlim(0,200)
ax[k,0].grid()
ax[k,1].grid()
if k==0:
ax[k,0].legend(loc="lower center",ncol=2, bbox_to_anchor=(1,1.3))
ax[k,0].set_title('('+abc[k*2]+') Batch size '+str(batch_size), loc='left')
ax[k,1].set_title('('+abc[k*2+1]+') Batch size '+str(batch_size), loc='left')
ax[k,0].set_yticks([-1, 0, 1])
ax[k,0].set_ylim(-1,1)
ax[k,1].set_ylim(0,5)
ax[k,1].set_yticks([0, 2, 4])
ax[-1,1].set_xlabel('Number of epochs')
ax[-1,0].set_xlabel('Number of epochs')
fig.savefig('figures/learning_curve_all.png',dpi=300)
# %% Testing number of layers and nodes
test_stability=0
# plt.close('all')
if test_stability:
filename="./output/layers_nodes_grid_final.txt"
f = open(filename, "w")
def Msg(txt):
f = open(filename, "a")
print(txt)
f.write(txt + "\n")
df_train = df.loc[~np.isin(df.site,['NASA-E','SwissCamp','SWC','Swiss Camp', 'NASA-SE','KAN_M']), :].copy()
df_test = df.loc[np.isin(df.site,['NASA-E','SwissCamp','SWC','Swiss Camp', 'NASA-SE','KAN_M']), :].copy()
df_sub = df.loc[np.isin(df.site, ["Swiss Camp", "DYE-2", "KAN_U",
"Camp Century", 'KPC_U', 'QAS_U',
'NASA-E', 'NASA-SE','KAN_M']),:].copy()
for layers in [1, 2, 3]:
for nodes in [8, 16, 32, 64, 128, 256]:
# print(epochs, 'epochs')
num_models = 10
model = [None]*num_models
PredictorScalerFit = [None]*num_models
TargetVarScalerFit = [None]*num_models
# training the models
for i in range(num_models):
# print(i)
model[i], PredictorScalerFit[i], TargetVarScalerFit[i] = train_ANN(
df_train, Predictors, num_nodes = nodes, num_layers=layers, epochs=150,
batch_size=4000, plot=False,
)
df_test['out_mod_'+str(i)] = ANN_predict(df_test[Predictors],
model[i], PredictorScalerFit[i], TargetVarScalerFit[i]).values
df_train['out_mod_'+str(i)] = ANN_predict(df_train[Predictors],
model[i], PredictorScalerFit[i], TargetVarScalerFit[i]).values
Msg('%i, %i, %0.2f, %0.2f, %0.2f, %0.2f'%(layers, nodes,
(df_test['temperatureObserved'] - df_test['out_mod_'+str(i)]).mean(),
np.sqrt(((df_test['temperatureObserved'] - df_test['out_mod_'+str(i)])**2).mean()),
(df_train['temperatureObserved'] - df_train['out_mod_'+str(i)]).mean(),
np.sqrt(((df_train['temperatureObserved'] - df_train['out_mod_'+str(i)])**2).mean())))
# plt.close('all')
abc='abcdefghijklmnopqrst'
ls=['-','--',':','-.','-','--',':','-.','-','--',':','-.']
df_nodes = pd.read_csv('./output/layers_nodes_grid_final.txt',header=None)
df_nodes.columns=['layers','nodes','MD_val','RMSD_val', 'MD_train','RMSD_train']
tmp = df_nodes.groupby(['layers','nodes']).mean()
tmp[['MD_val_std','RMSD_val_std','MD_train_std','RMSD_train_std']] = df_nodes.groupby(['layers','nodes']).std().mean()
fig, ax = plt.subplots(3,2,figsize=(8, 8), sharex=True)
plt.subplots_adjust(hspace=0.2)
for k, layers in enumerate([1,2,3]):
ax[k,0].errorbar(tmp.loc[layers].index + k/2 - 2, tmp.loc[layers, 'MD_val'],
yerr=tmp.loc[layers, 'MD_val_std'], label = 'validation')
ax[k,1].errorbar(tmp.loc[layers].index + k/2 -2, tmp.loc[layers, 'RMSD_val'],
yerr=tmp.loc[layers, 'RMSD_val_std'])
ax[k,0].errorbar(tmp.loc[layers].index + k/2 - 2, tmp.loc[layers, 'MD_train'],
yerr=tmp.loc[layers, 'MD_train_std'], label = 'training')
ax[k,1].errorbar(tmp.loc[layers].index + k/2 -2, tmp.loc[layers, 'RMSD_train'],
yerr=tmp.loc[layers, 'RMSD_train_std'])
ax[k,0].set_ylabel('MD (°C)')
ax[k,1].set_ylabel('RMSD (°C)')
# ax[0].set_xlim(0,200)
ax[k,0].grid()
ax[k,1].grid()
if k==0:
ax[k,0].legend(loc="lower center",ncol=2, bbox_to_anchor=(1,1.3))
ax[k,0].set_title('('+abc[k*2]+') Number of layers: '+str(layers), loc='left')
ax[k,1].set_title('('+abc[k*2+1]+') Number of layers: '+str(layers), loc='left')
ax[k,0].set_zorder(10)
ax[k,1].set_zorder(10)
ax[-1,1].set_xlabel('Number of nodes')
ax[-1,0].set_xlabel('Number of nodes')
fig.savefig('figures/layers_and_nodes.png',dpi=300)
# %% best model
print('Training model on entire dataset')
best_model, best_PredictorScalerFit, best_TargetVarScalerFit = train_ANN(
df, Predictors, num_nodes = 64, num_layers=2, epochs=150, batch_size=4000)
# %% synthetic monthly output
plt.figure()
ax=plt.gca()
for i in [1, 1000, 3000, 4000]:
df_in = df.iloc[[i], :].copy()
df_test = pd.DataFrame()
for m in range(1,13):
df_in.month = np.cos((m-1)/12*2*np.pi)
df_in['month_true'] = m
df_in['T10m'] = ANN_predict(df_in[Predictors],
best_model,
best_PredictorScalerFit,
best_TargetVarScalerFit).item()
df_test = pd.concat((df_test, df_in), ignore_index=True)
label = '%0.3f °N, %0.3f °E'%tuple(df_in[['latitude','longitude']].iloc[0,:].to_list())
ax.plot(df_test.month_true, df_test.T10m, marker='o', ls='None', label=label)
plt.legend()
plt.figure()
ax=plt.gca()
df_in = df.iloc[[1000], :].copy()
df_test = pd.DataFrame()
for m in [-15, -10, -5, 0, 5, 10, 15]:
df_in['t2m_10y_avg'] = df_in['t2m_10y_avg'] + m
df_in['T10m'] = ANN_predict(df_in[Predictors],
best_model,
best_PredictorScalerFit,
best_TargetVarScalerFit).item()
df_test = pd.concat((df_test, df_in), ignore_index=True)
ax.plot(df_test.t2m_10y_avg, df_test.T10m, marker='o', ls='None')
plt.xlabel('t2m_10y_avg')
plt.ylabel('T10m')
plt.xlabel('month')
plt.ylabel('T10m')
plt.figure()
ax=plt.gca()
df_in = df.iloc[[1000], :].copy()
df_test = pd.DataFrame()
for m in [0.2, 0.5, 1, 1.5, 2]:
df_in['sf_10y_avg'] = df_in['sf_10y_avg'] * m
df_in['T10m'] = ANN_predict(df_in[Predictors],
best_model,
best_PredictorScalerFit,
best_TargetVarScalerFit).item()
df_test = pd.concat((df_test, df_in), ignore_index=True)
ax.plot(df_test.sf_10y_avg, df_test.T10m, marker='o', ls='None')
plt.xlabel('sf_10y_avg')
plt.ylabel('T10m')
# %% SHAP analysis
make_shap_analysis = 0
if make_shap_analysis:
import shap
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(df[Predictors].values,
df['temperatureObserved'].values,
test_size=0.1, random_state=42)
explainer = shap.KernelExplainer(best_model.predict, best_PredictorScalerFit.transform(X_train))
shap_values = explainer.shap_values(X_test, nsamples=100)
shap_values_scaled = shap_values[0]
for i in range(shap_values[0].shape[0]):
shap_values_scaled[i,:] = best_TargetVarScalerFit.transform(shap_values[0][i,:].reshape(-1,1)).reshape(1,-1)
shap.summary_plot(shap_values, best_PredictorScalerFit.transform(X_train), feature_names=Predictors)
shap.summary_plot([shap_values_scaled], best_PredictorScalerFit.transform(X_train), feature_names=Predictors)
features = Predictors
groups = {
't2m': [f for f in features if 't2m' in f],
'sf': [f for f in features if 'sf' in f],
'month': ['month']
}
from itertools import repeat, chain
revert_dict = lambda d: dict(chain(*[zip(val, repeat(key)) for key, val in d.items()]))
mapgroup = revert_dict(groups)
def grouped_shap(shap_vals, features, groups):
groupmap = revert_dict(groups)
shap_Tdf = pd.DataFrame(shap_vals, columns=pd.Index(features, name='features')).T
shap_Tdf['group'] = shap_Tdf.reset_index().features.map(groupmap).values
shap_grouped = shap_Tdf.groupby('group').sum().T
return shap_grouped
shap_vals = np.array(shap_values)[0,:,:]
shap_group = grouped_shap(shap_vals, features, groups)
Predictors_name = [
'T$_{2m}$ amp. in last year',
'T$_{2m}$ 10 year average',
'SF 10 year average',
'SF in year Y-1',
'SF in year Y-2',
'SF in year Y-3',
'SF in year Y-4',
'SF in year Y-5',
'T$_{2m}$ in year Y-1',
'T$_{2m}$ in year Y-2',
'T$_{2m}$ in year Y-3',
'T$_{2m}$ in year Y-4',
'T$_{2m}$ in year Y-5',
'month',
]
shap.summary_plot(shap_values_scaled, best_PredictorScalerFit.transform(X_test),
plot_type='violin',
feature_names=Predictors_name)
plt.savefig('figures/SHAP_1.png')
shap.summary_plot(shap_group.values,
plot_type='violin',
feature_names=['month',
'SF-dependent inputs',
'T$_{2m}$-dependent inputs',])
plt.savefig('figures/SHAP_2.png')
# %% Predicting T10m over ERA5 dataset
predict = 0
if predict:
print("predicting T10m over entire ERA5 dataset")
print('converting to dataframe')
tmp = ds_era[Predictors].to_dataframe()
tmp = tmp.loc[tmp.notnull().all(1),:][Predictors]
print('applying ANN (takes ~45min on my laptop)')
out = ANN_predict(tmp, best_model, best_PredictorScalerFit, best_TargetVarScalerFit)
ds_T10m = out.to_frame().to_xarray()["temperaturePredicted"].sortby(['time','latitude','longitude'])
ds_T10m = ds_T10m.rio.write_crs(4326).rio.clip(ice.to_crs(4326).geometry).rename('T10m')
ds_T10m.attrs['author'] = 'Baptiste Vandecrux'
ds_T10m.attrs['contact'] = 'bav@geus.dk'
ds_T10m.attrs['description'] = 'Monthly grids of Greenland ice sheet 10 m subsurface temperature for 1954-2022 as predicted by an artifical neural network trained on more than 4500 in situ observations and using ERA5 snowfall and air temperature as input.'
ds_T10m.to_netcdf("output/T10m_prediction.nc")
ds_T10m = xr.open_dataset("output/T10m_prediction.nc")["T10m"]
# %% spatial cross-validation:
print("fitting cross-validation models")
zwally = gpd.GeoDataFrame.from_file("Data/misc/Zwally_10_zones_3413.shp")
zwally = zwally.set_crs("EPSG:3413").to_crs("EPSG:4326")
zwally = zwally.drop(columns=["name"])
df = df.reset_index(drop=True)
gdf = gpd.GeoDataFrame(
df, geometry=gpd.points_from_xy(df.longitude, df.latitude)
).set_crs(4326)
points_within = gpd.sjoin(gdf, zwally, op="within")
df["zwally_zone"] = np.nan
df["T10m_pred_unseen"] = np.nan
model_list = [None] * zwally.shape[0]
PredictorScalerFit_list = [None] * zwally.shape[0]
TargetVarScalerFit_list = [None] * zwally.shape[0]
for i in range(zwally.shape[0]):
msk = points_within.loc[points_within.index_right == i, :].index
df.loc[msk, "zwally_zone"] = i
print(i, len(msk), "%0.2f" % (len(msk) / df.shape[0] * 100))
df_cv = df.loc[df.zwally_zone != i, ].copy()
model_list[i], PredictorScalerFit_list[i], TargetVarScalerFit_list[i] \
= train_ANN(df_cv, Predictors,
TargetVariable="temperatureObserved",
num_nodes = 32,
num_layers=2,
epochs=1000)
# saving the model estimate for the unseen data
df_unseen = df.loc[df.zwally_zone == i, :].copy()
df.loc[df.zwally_zone == i,"T10m_pred_unseen"] = ANN_predict(df_unseen[Predictors],
model_list[i],
PredictorScalerFit_list[i],
TargetVarScalerFit_list[i])
# defining function that makes the ANN estimate from predictor raw values
df = df.sort_values("date")
def ANN_model_cv(df_pred, model_list, PredictorScalerFit_list, TargetVarScalerFit_list):
pred = pd.DataFrame()
for i in range(zwally.shape[0]):
pred["T10m_pred_" + str(i)] = ANN_predict(df_pred,
model_list[i],
PredictorScalerFit_list[i],
TargetVarScalerFit_list[i])
df_mean = pred.mean(axis=1)
df_std = pred.std(axis=1)
return df_mean.values, df_std.values
# %% Predicting T10m uncertainty
predict = 0
if predict:
print("predicting T10m uncertainty over entire ERA5 dataset")
print("...takes about 10 hours")
for year in range(1950,2023): #np.unique(ds_era.time.dt.year):
ds_T10m_std = ds_era["t2m"].sel(time=str(year)).copy().rename("T10m_std") * np.nan
for time in ds_T10m_std.time:
if (time.dt.month==1) & (time.dt.day==1):
print(time.dt.year.values)
tmp = ds_era.sel(time=time).to_dataframe()
_, tmp["cv_std"] = ANN_model_cv(tmp[Predictors], model_list,
PredictorScalerFit_list,
TargetVarScalerFit_list)
ds_T10m_std.loc[dict(time=time)] = (
tmp["cv_std"].to_frame().to_xarray()["cv_std"]
.transpose("latitude", "longitude").values
)
ds_T10m_std.to_netcdf("output/uncertainty/predicted_T10m_std_"+str(year)+".nc")
ds_T10m_std = xr.open_mfdataset(
["output/uncertainty/predicted_T10m_std_"+str(year)+".nc" for year in range(1950,2023)])
ds_T10m_std = ds_T10m_std.rio.write_crs(4326)
ice_4326 = ice.to_crs(4326)
msk = ds_T10m_std.T10m_std.isel(time=0).rio.clip(ice_4326.geometry, ice_4326.crs)
ds_T10m_std = ds_T10m_std.where(msk.notnull())
ds_T10m_std['T10m_std'] = xr.where(ds_T10m_std.T10m_std<0.5, 0.5, ds_T10m_std.T10m_std)
ds_T10m_std.attrs['author'] = 'Baptiste Vandecrux'
ds_T10m_std.attrs['contact'] = 'bav@geus.dk'
ds_T10m_std.attrs['description'] = 'Monthly grids of the uncertainty of the ANN Greenland ice sheet 10 m subsurface temperature for 1954-2022 calculated from the standard deviation between the predictions of 10 spatial cross-validation models.'
ds_T10m_std.to_netcdf("output/T10m_uncertainty.nc")
ds_T10m_std = xr.open_dataset("output/T10m_uncertainty.nc")['T10m_std']
# %% checking that CV std
fig, ax = plt.subplots(4, 3, figsize=(15, 15))
ax = ax.flatten()
plt.subplots_adjust(hspace=0.4, top = 0.9,left =0.15,right=0.95)
for k, site in enumerate(["CP1","DYE-2", "Summit","Camp Century",
"Swiss Camp", "NASA-SE", "KAN_U", "EKT",
"French Camp VI","FA_13", "NASA-E", 'KPC_U']):
print(site)
df_select = ds_era.sel(df.loc[df.site == site, ['latitude',
'longitude']].iloc[0,:].to_dict(),
method='nearest').to_dataframe()
df_select["cv_mean"], df_select["cv_std"] = ANN_model_cv(
df_select[Predictors],
model_list,
PredictorScalerFit_list,
TargetVarScalerFit_list
)
df_select["cv_std"].plot(ax=ax[k])
ds_T10m_std.sel(dict(latitude=df_select.latitude.unique()[0],
longitude=df_select.longitude.unique()[0]),
method='nearest').to_dataframe().T10m_std.plot(ax=ax[k])
plt.title(site)
# %% Preparing for figure 3
# averaging and reprojecting uncertainty map
ice = gpd.GeoDataFrame.from_file("Data/misc/IcePolygon_3413.shp")
ice = ice.to_crs("EPSG:4326")
ds_era = ds_era.rio.write_crs("EPSG:4326").rio.clip(ice.geometry.values, ice.crs)
ds_T10m_std_avg = (
ds_T10m_std.mean(dim="time")
.rio.write_crs("EPSG:4326")
.rio.clip(ice.geometry.values, ice.crs)
)
ds_T10m_std_avg = ds_T10m_std_avg.rio.reproject("EPSG:3413")
# Extracting T10m for all dataset
def extract_T10m_values(ds, df, dim1="x", dim2="y", name_out="out"):
coords_uni = np.unique(df[[dim1, dim2]].values, axis=0)
x = xr.DataArray(coords_uni[:, 0], dims="points")
y = xr.DataArray(coords_uni[:, 1], dims="points")
ds_interp = ds.bfill(dim='latitude').interp(longitude=x,
latitude=y,
method="nearest")
for i in (range(df.shape[0])):
query_point = (df[dim1].values[i], df[dim2].values[i])
index_point = np.where((coords_uni == query_point).all(axis=1))[0][0]
tmp = ds_interp.T10m.isel(points=index_point).sel(
time=df.date.values[i], method="nearest"
)
df.iloc[i, df.columns.get_loc(name_out)] = tmp.values
return df
# extracting from T_10m dataset
df['T10m_ANN'] = np.nan
df = extract_T10m_values(
ds_T10m.to_dataset(), df, dim1="longitude", dim2="latitude", name_out="T10m_ANN"
)
# %% Plotting Figure 3
df_10m = df.loc[df.depthOfTemperatureObservation.astype(float) == 10, :]
# plt.close('all')
matplotlib.rcParams.update({'font.size': 13})
df.loc[df.site=='NAE','site'] = 'NASA-E'
df.loc[df.site=='SWC','site'] = 'Swiss Camp'
df.loc[df.site=='DY2','site'] = 'DYE-2'
abc='abcdefghijklmno'
fig, ax = plt.subplots(11, 1, figsize=(10, 14),sharex=(True))
ax = ax.flatten()
plt.subplots_adjust(hspace=0.06, top = 1,bottom=0.05, left =0.12,right=0.9)
for k in range(5):
ax[k].set_axis_off()
# =============== scatterplot =======================
for ax1, model in zip( [plt.subplot(4,2,1), plt.subplot(4,2,3)],
["ANN", "pred_unseen"]):
ax1.plot(
df_10m["temperatureObserved"],
df_10m["T10m_" + model],
marker="+",
linestyle="none",
# markeredgecolor="lightgray",
markeredgewidth=0.5,
markersize=5,
color="k",
)
RMSE = np.sqrt(np.mean((df_10m["T10m_" + model] - df_10m.temperatureObserved) ** 2))
ME = np.mean(df_10m["T10m_" + model] - df_10m.temperatureObserved)
if ME<0.05:
ME=abs(ME)
textstr = "\n".join(
(
r"MD = %.1f °C" % (ME,),
r"RMSD=%.1f °C" % (RMSE,),
r"N=%.0f" % (np.sum(~np.isnan(df_10m["T10m_" + model])),),
)
)
t1 = ax1.text(0.02, 0.95, "All sites\n" + textstr,
transform=ax1.transAxes, fontsize=13, verticalalignment="top")
t1.set_bbox(dict(facecolor='w', alpha=0.3, edgecolor='w'))
if model == "ANN":
ax1.set_title("(a) best ANN model vs. its training data", loc="left",fontsize=13)
pos1 = ax1.get_position()
pos2 = [pos1.x0, pos1.y0+0.03, pos1.width*1.1, pos1.height*0.7]
ax1.set_position(pos2)
else:
ax1.set_title("(b) CV ANN models vs. their unseen data", loc="left",fontsize=13)
pos1 = ax1.get_position()
pos2 = [pos1.x0, pos1.y0+0.04, pos1.width*1.1, pos1.height*0.7]
ax1.set_position(pos2)
ax1.plot([-35, 2], [-35, 2], c="black")
ax1.set_xlim(-35, 2)
ax1.set_ylim(-35, 2)
ax1.grid()
# Comparison for ablation datasets
df_ablation = df.loc[df.depthOfTemperatureObservation.astype(float) == 10, :]
df_ablation = df_ablation.loc[
np.isin(df.site, ['KPC_L', 'SCO_U', 'KAN_L', 'KPC_U', 'SCO_L', 'QAS_U', 'NUK_U',
'UPE_L', 'UPE_U', 'NUK_L', 'TAS_L', 'KAN_M', 'THU_L', 'TAS_U',
'T-11b', 'THU_U', 'T-11a', 'T-14', 'TAS_A', 'T-15a', 'T-15b',
'T-16', 'QAS_M', 'T-15c', 'THU_U2', 'Swiss Camp','SwissCamp',
'QAS_Uv3', 'KPC_Uv3', 'SWC_O', 'JAR_O']),:]
ax1.plot( df_ablation["temperatureObserved"], df_ablation["T10m_" + model],
marker="+", linestyle="none", markeredgewidth=0.5,
markersize=5, color="tab:red",
)
RMSE = np.sqrt(np.mean((df_ablation["T10m_" + model] - df_ablation.temperatureObserved) ** 2))
ME = np.mean(df_ablation["T10m_" + model] - df_ablation.temperatureObserved)
if abs(ME)<0.05:
ME=abs(ME)
textstr = "\n".join((r"MD=%.1f °C " % (ME,),
r"RMSD=%.1f °C" % (RMSE,),
r"N=%.0f" % (np.sum(~np.isnan(df_ablation["T10m_" + model]))),
))
t = ax1.text(0.63, 0.4, "Ablation sites\n" + textstr, transform=ax1.transAxes,
fontsize=13, verticalalignment="top", color="tab:red")
t.set_bbox(dict(facecolor='w', alpha=0.3, edgecolor='w'))
ax1.tick_params(axis='both', which='major', labelsize=14)
ax1.set_xlabel("Observed $T_{10m}$ (°C)")
ax1.set_ylabel("Predicted $T_{10m}$ (°C)")
# =============== map =======================
ax_map = plt.subplot(2,2,2)
land.plot(color="lightgray", ax=ax_map)
im = ds_T10m_std_avg.where(ds_T10m_std_avg < 1000).plot(
ax=ax_map, add_colorbar=False)
cbar = fig.colorbar(im, label="Average uncertainty of the ANN (°C)", shrink=0.8)
gpd.GeoDataFrame.from_file("Data/misc/Zwally_10_zones_3413.shp").boundary.plot(
ax=ax_map, color="w", linestyle="-", linewidth=0.5
)
ax_map.set_axis_off()
ax_map.set_title("")
ax_map.text(0.1, 0.9, '(c)',
horizontalalignment='left',
verticalalignment='center',
fontsize=14,
transform = ax_map.transAxes)
ax_map.set_xlim(-700000, 900000)
ax_map.set_ylim(-3400000, -574000)
import matplotlib.patheffects as pe
# =============== site examples =======================
for k, site in enumerate(["NASA-E", "DYE-2", "KAN_L", 'KPC_U',"FA_13"]):
k = k+6
print(site)
df_site = df.loc[df.site == site, :].iloc[0:1]
gdf_site = gpd.GeoDataFrame(df_site,
geometry=gpd.points_from_xy(df_site.longitude,
df_site.latitude),
crs="EPSG:4326").to_crs(3413)
gdf_site.plot(ax=ax_map, color='w', edgecolor='k')
xytext=(5, 3)
if site == 'DYE-2': xytext=(-5, 8)
if site == 'KAN_L': xytext=(-40, 10)
if site == 'FA_13': xytext=(5, -20)
for x, y in zip(gdf_site.geometry.x, gdf_site.geometry.y):
ax_map.annotate(site, xy=(x, y), xytext=xytext,
textcoords="offset points",
fontsize=15,
path_effects=[pe.withStroke(linewidth=3, foreground="white")])
df_select = ds_era.sel(df.loc[df.site == site, ['latitude',
'longitude']].iloc[0,:].to_dict(),
method='nearest').to_dataframe()
cv_std = ds_T10m_std.sel(dict(latitude=df_select.latitude.unique()[0],
longitude=df_select.longitude.unique()[0]),
method='nearest').to_dataframe().T10m_std
# best_model_pred = ANN_predict(df_select[Predictors],
# best_model,
# best_PredictorScalerFit,
# best_TargetVarScalerFit)
df_interp = ds_T10m.interp(longitude=df_site.longitude.item(),
latitude=df_site.latitude.item(), method="linear").to_dataframe()['T10m']
ax[k].step(df_interp.index, df_interp, color="tab:blue", where='post', label="ANN")
ax[k].fill_between(df_interp.index, df_interp - cv_std,
df_interp + cv_std, color="turquoise", step='post',
label="ANN uncertainty", zorder=0)
for i in range(zwally.shape[0]):
if i == 0:
lab = "cross-validation models"
else:
lab = "_no_legend_"
ax[k].step(
df_select.index,
ANN_predict(df_select[Predictors], model_list[i],
PredictorScalerFit_list[i], TargetVarScalerFit_list[i]),
"-", color="gray", where='post', alpha=0.7, lw=0.5, label=lab,
)
ax[k].plot(
df.loc[df.site == site, :].date,
df.loc[df.site == site, :].temperatureObserved,
".", color="orange",alpha=0.9, linestyle="None", label="_nolegend_",
)
ax[k].plot(np.nan, np.nan,
"o", color="orange",alpha=0.9, linestyle="None", label="observations",
)
if site == 'DYE-2':
ax[k].text(0.01, 0.8, '('+abc[k-3]+') '+site,
horizontalalignment='left', verticalalignment='center',
fontsize=14, transform = ax[k].transAxes)
else:
ax[k].text(0.01, 0.1, '('+abc[k-3]+') '+site,
horizontalalignment='left', verticalalignment='center',
fontsize=14, transform = ax[k].transAxes)
ax[k].set_xlim(pd.to_datetime('1998-01-01'),pd.to_datetime('2023-01-01'))
ax[k].grid()
ax[6].legend(ncol=2, bbox_to_anchor=(0,0.95))
fig.text(0.5, 0.02, "Year",
ha="center", va="center", fontsize=16)
fig.text(0.03, 0.3, "10 m subsurface temperature (°C)",
ha="center", va="center", rotation="vertical", fontsize=16)
fig.savefig('figures/figure3.tif', dpi =300)
fig.savefig('figures/figure3.png', dpi=120)
fig.savefig('figures/figure3.pdf')