We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
hi,我在尝试训练freev的时候发现了一个问题,当我尝试不使用预训练模型来训练一个采样率为44.1khz的模型时,代码打印完g的结构之后不进行训练。请问目前代码是只能进行微调吗?如果可以的话,我该修改哪些部分以便开始训练而不是微调? config文件如下:
{ "input_training_wav_list": "/public/home/acd6i9tg6y/fish-diffusion/vocoder_training_data/train", "input_validation_wav_list": "/public/home/acd6i9tg6y/fish-diffusion/vocoder_training_data/val", "test_input_wavs_dir":"/public/home/acd6i9tg6y/fish-diffusion/vocoder_training_data/test", "test_input_mels_dir":"./", "test_mel_load": 0, "test_output_dir": "/public/home/acd6i9tg6y/fish-diffusion/vocoder_training_data/test_out", "batch_size": 16, "learning_rate": 0.0002, "adam_b1": 0.8, "adam_b2": 0.99, "lr_decay": 0.999, "seed": 114514, "training_epochs": -1, "stdout_interval":20, "checkpoint_interval": 1000, "summary_interval": 100, "validation_interval": 1000, "checkpoint_path": "./ckpt/20240627-freev-44100", "checkpoint_file_load": "", "ASP_channel": 513, "ASP_resblock_kernel_sizes": [3,7,11], "ASP_resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]], "ASP_input_conv_kernel_size": 7, "ASP_output_conv_kernel_size": 7, "PSP_channel": 512, "PSP_resblock_kernel_sizes": [3,7,11], "PSP_resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]], "PSP_input_conv_kernel_size": 7, "PSP_output_R_conv_kernel_size": 7, "PSP_output_I_conv_kernel_size": 7, "segment_size": 16384, "num_mels": 128, "n_fft": 2048, "hop_size": 512, "win_size": 2048, "sampling_rate": 44100, "fmin": 40, "fmax": 16000, "meloss":null, "num_workers": 4 }
json文件肯定有一些地方是错误的,还望海涵
The text was updated successfully, but these errors were encountered:
应该是training epochs这里,如果是-1的话会立刻结束循环
Sorry, something went wrong.
如果训练有结果的话,可以了解一下训练结果吗😂我也挺好奇这个方法在歌声上会不会有比speech更大的提升,个人感觉如果没有更改f0的需求的话,伪逆幅度谱的condition比f0是更强的
好的,不过要是应用到目前的歌声合成的话,确实还得需要f0_emb。后续练完我把权重公开一下))
No branches or pull requests
hi,我在尝试训练freev的时候发现了一个问题,当我尝试不使用预训练模型来训练一个采样率为44.1khz的模型时,代码打印完g的结构之后不进行训练。请问目前代码是只能进行微调吗?如果可以的话,我该修改哪些部分以便开始训练而不是微调?
config文件如下:
json文件肯定有一些地方是错误的,还望海涵
The text was updated successfully, but these errors were encountered: