-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
139 lines (123 loc) · 4.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import pandas as pd
from custom_dataset import TimeSeriesDataLoader
import pytorch_lightning as pl
from multimix_tft import TemporalFusionTransformer as tft
# argparser
import argparse
import yaml
def create_ckpt_name_and_logger(config):
# Extract columns, omitting prefix and filtering
cols = ""
cols = cols.join(
i.replace("vmc_", "")
for i in config["model_params"]["historical_real_cols"]
if "vmc" in i
)
target = config["model_params"]["target_col"][0].replace("vmc_", "")
# Calculate time gap
time_gap = config["model_params"]["time_gap"] * 4
ckpt_name = f"MultiMix_{cols}_{target}_{time_gap}"
# create ckpt logger
tb_logger = pl.loggers.TensorBoardLogger(
save_dir="lightning_logs", # Base directory for logs
name=ckpt_name, # Top-level directory name
version=None, # Auto-incrementing version number
)
# create csv logger
csv_logger = pl.loggers.CSVLogger(
save_dir="lightning_logs",
name=ckpt_name,
version=tb_logger.version, # Use the same version directory as the TensorBoard logger
)
loggers = [tb_logger, csv_logger]
return ckpt_name, loggers
def main(args):
# set global seed
pl.seed_everything(96)
# load config
with open(args.config_path) as cfg:
config = yaml.safe_load(cfg)
# q = input(
# f"Time gap is set to {config['model_params']['time_gap']} unit."
# + f"\nTarget is set to {config['model_params']['target_col']}."
# + f"\nand historical variables are set to {config['model_params']['historical_real_cols']}."
# + "\nDo you want to continue? (y/n): "
# )
# if q.lower() != "y":
# print("Exiting...")
# exit()
m_config = config["model_params"]
t_params = config["train_params"]
# load data
train_df = pd.read_parquet(config["train_path"])
val_df = pd.read_parquet(config["val_path"])
test_df = pd.read_parquet(config["test_path"])
# print shapes
print("Train shape: ", train_df.shape)
print("Val shape: ", val_df.shape)
print("Test shape: ", test_df.shape)
# Initialize data module
data_module = TimeSeriesDataLoader(
train=train_df,
val=val_df,
test=test_df,
static_real_cols=m_config["static_real_cols"],
static_cat_cols=m_config["static_cat_cols"],
historical_real_cols=m_config["historical_real_cols"],
historical_cat_cols=m_config["historical_cat_cols"],
known_real_cols=m_config["known_real_cols"],
known_cat_cols=m_config["known_cat_cols"],
target=m_config["target_col"],
window_size=m_config["window_size"],
group_ids=m_config["group_col"],
batch_size=m_config["batch_size"],
time_idx=m_config["time_col"],
mixed_only=m_config["mixed_only"],
time_gap=m_config["time_gap"],
)
train_dataloader = data_module.train_dataloader()
val_dataloader = data_module.val_dataloader()
test_dataloader = data_module.test_dataloader()
# Initialize model
model = tft(
hidden_layer_size=m_config["hidden_layer_size"],
static_categorical_sizes=data_module.static_cat_sizes,
historical_categorical_sizes=data_module.historical_cat_sizes,
static_reals=m_config["static_real_cols"],
historical_reals=m_config["historical_real_cols"],
known_categoricals=m_config["known_cat_cols"],
known_reals=m_config["known_real_cols"],
dropout_rate=m_config["dropout_rate"],
num_heads=m_config["num_heads"],
output_size=m_config["output_size"],
quantiles=m_config["quantiles"],
window_size=data_module.window_size,
)
# name custom checkpoint
model_name, loggers = create_ckpt_name_and_logger(config)
checkpoint_callback = pl.callbacks.ModelCheckpoint(
monitor="val_mse_loss1",
filename=model_name + "-{epoch:02d}-{val_mse_loss1:.2f}",
save_top_k=1,
save_last=True,
mode="min",
)
# init trainer
trainer = pl.Trainer(
logger=loggers,
max_epochs=config["train_params"]["epochs"],
callbacks=[checkpoint_callback],
)
# fit trainer
trainer.fit(model, train_dataloader, val_dataloader)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train MultiMix.")
parser.add_argument("--config_path", type=str)
parser.add_argument(
"--ckpt_path",
type=str,
default=None,
help="Checkpoint path to resume training, if any.",
)
args = parser.parse_args()
main(args)