-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlosses.py
42 lines (33 loc) · 1.3 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
import torch.nn as nn
class QuantileLoss(nn.Module):
def __init__(self, quantiles):
"""
Initializes the QuantileLoss module.
Parameters:
- quantiles: A list of quantiles, each a float between 0 and 1.
"""
super().__init__()
self.quantiles = quantiles
def forward(self, y_preds, y_true):
"""
Computes the quantile loss for multiple quantiles.
Parameters:
- y_true: The true target values, a tensor of shape (batch_size,).
- y_preds: The predicted values, a tensor of shape (batch_size, num_quantiles),
where num_quantiles is the number of quantiles for which predictions were made.
Returns:
- loss: The average quantile loss across all quantiles.
"""
assert (
len(self.quantiles) == y_preds.shape[1]
), "Number of predictions must match number of quantiles"
errors = (
y_true.unsqueeze(1) - y_preds
) # Broadcast true values across quantile dimension
losses = torch.zeros_like(errors)
for i, tau in enumerate(self.quantiles):
losses[:, i] = torch.where(
errors[:, i] > 0, tau * errors[:, i], (tau - 1) * errors[:, i]
)
return 2 * losses.mean()